Physicochemical properties and in vitro digestibility of flour and starch from pea (Pisum sativum L.) cultivars

2012 ◽  
Vol 50 (1) ◽  
pp. 131-137 ◽  
Author(s):  
Hyun-Jung Chung ◽  
Qiang Liu
2016 ◽  
Vol 68 (7-8) ◽  
pp. 762-770 ◽  
Author(s):  
Miaomiao Shi ◽  
Kai Wang ◽  
Shujuan Yu ◽  
Robert G. Gilbert ◽  
Qunyu Gao

2020 ◽  
Vol 72 (9-10) ◽  
pp. 1900228 ◽  
Author(s):  
Manolo Gonzalez ◽  
Jose Alvarez‐Ramirez ◽  
E. Jaime Vernon‐Carter ◽  
Isabel Reyes ◽  
Lurdes Alvarez‐Poblano

2018 ◽  
Vol 18 (1) ◽  
pp. 10-15
Author(s):  
Wang Yi-Wei ◽  
He Yong-Zhao ◽  
An Feng-Ping ◽  
Huang Qun ◽  
Zeng Feng ◽  
...  

In this study, Chinese yam starch-water suspension (8%) were subjected to high-pressure homogenization (HPH) at 100 MPa for increasing cycle numbers, and its effect of on the physicochemical properties of the starch was investigated. Results of the polarizing microscope observations showed that the starch granules were disrupted (i.e. greater breakdown value) after HPH treatment, followed by a decrease in cross polarization. After three HPH cycles, the crystallinity of starch decreased, while the crystal type remained unaltered. Meanwhile, the contents of rapidly digestible starch and slowly digestible starch were increased. On the contrary, resistant starch content was decreased. Our results indicate that HPH treatment resulted in reduction of starch crystallinity and increase of starch digestibility.


2021 ◽  
pp. 2100102
Author(s):  
Shuyu Jia ◽  
Bin Yu ◽  
Haibo Zhao ◽  
Haiteng Tao ◽  
Pengfei Liu ◽  
...  

2021 ◽  
Author(s):  
Huishan Shen ◽  
Xiangzhen Ge ◽  
Bo Zhang ◽  
Chunyan Su ◽  
Qian Zhang ◽  
...  

Non-thermal plasma is an emerging and effective starch modification technology. In this paper, plasma pretreatment was used to modify the citrate naked barley starch for enhancing the accessibility of citric...


1997 ◽  
Vol 75 (3) ◽  
pp. 492-500 ◽  
Author(s):  
Delphine Popiers ◽  
Frédéric Flandre ◽  
Brigitte S. Sangwan-Norreel

In vitro regeneration of pea (Pisum sativum L.), a regeneration recalcitrant legume, was optimised using thidiazuron. Buds were initiated from the meristems of the cotyledonary nodes of embryo axes, isolated from mature seeds, and subcultured on Murashige and Skoog medium supplemented with 13.3 μM 6-benzylaminopurine, 16.1 μM α-naphthaleneacetic acid, and 0.2 μM 2,3,5-triiodobenzoic acid. Proliferation of buds was preceded by the formation of white nodular-like protrusions. These structures were cut transversally in fine slices and subcultured on the same medium or in presence of thidiazuron that produces a second wave of secondary budding. The best results (90–110 buds per expiant) were obtained with 10 μM thidiazuron. The capacity of regeneration was genotype independent and reproducible. Buds elongated on the initial medium, then formed roots in presence of 5.37 μM α-naphthaleneacetic acid. and developed into viable plants. Key words: Pisum sativum L., regeneration, meristems, embryo axes, thidiazuron.


Sign in / Sign up

Export Citation Format

Share Document