Enhanced oxygen barrier properties of poly(lactic acid) via oxygen scavenging strategy combining with uniaxial stretching

2021 ◽  
Vol 181 ◽  
pp. 521-527
Author(s):  
Zeyuan Pan ◽  
Qing Ju ◽  
Dong Zhao ◽  
Yucai Shen ◽  
Tingwei Wang
Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1113 ◽  
Author(s):  
Shouyun Cheng ◽  
Burhan Khan ◽  
Fahad Khan ◽  
Muhammad Rabnawaz

The preparation of renewable polyesters with good barrier properties is highly desirable for the packaging industry. Herein we report the synthesis of high molecular weight polyesters via an innovative use of an in situ drying agent approach and the barrier properties of the films formed from these polyesters. High number average molecular weight (Mn) semiaromatic polyesters (PEs) were synthesized via alternating ring-opening copolymerization (ROCOP) of phthalic anhydride (PA) and cyclohexene oxide (CHO) using a salen chromium(III) complex in the presence of 4-(dimethylamino)pyridine (DMAP) cocatalyst. The use of a calcium hydride (drying agent) was found to enhance the number Mn of the synthesized PEs, which reached up to 31.2 ku. To test the barrier properties, PE films were prepared by solvent casting approach and their barrier properties were tested in comparison poly(lactic acid) films. The PE films showed significantly improved water vapor and oxygen barrier properties compared to the commercial poly(lactic acid) (PLA) film that suggests the potential use of these PEs in in the food packaging industry.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2621 ◽  
Author(s):  
Hai Chi ◽  
Wenhui Li ◽  
Chunli Fan ◽  
Cheng Zhang ◽  
Lin Li ◽  
...  

The microstructure, thermal properties, mechanical properties and oxygen and water vapor barrier properties of a poly(lactic acid) (PLA)/nano-TiO2 composite film before and after high pressure treatment were studied. Structural analysis showed that the functional group structure of the high pressure treated composite film did not change. It was found that the high pressure treatment did not form new chemical bonds between the nanoparticles and the PLA. The micro-section of the composite film after high pressure treatment became very rough, and the structure was depressed. Through the analysis of thermal and mechanical properties, high pressure treatment can not only increase the strength and stiffness of the composite film, but also increase the crystallinity of the composite film. Through the analysis of barrier properties, it is found that the barrier properties of composite films after high pressure treatment were been improved by the applied high pressure treatment.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2346 ◽  
Author(s):  
Stanislav Kotsilkov ◽  
Evgeni Ivanov ◽  
Nikolay Vitanov

Nanoparticles of graphene and carbon nanotubes are attractive materials for the improvement of mechanical and barrier properties and for the functionality of biodegradable polymers for packaging applications. However, the increase of the manufacture and consumption increases the probability of exposure of humans and the environment to such nanomaterials; this brings up questions about the risks of nanomaterials, since they can be toxic. For a risk assessment, it is crucial to know whether airborne nanoparticles of graphene and carbon nanotubes can be released from nanocomposites into the environment at their end-life, or whether they remain embedded in the matrix. In this work, the release of graphene and carbon nanotubes from the poly(lactic) acid nanocomposite films were studied for the scenarios of: (i) biodegradation of the matrix polymer at the disposal of wastes; and (ii) combustion and fire of nanocomposite wastes. Thermogravimetric analysis in air atmosphere, transmission electron microscopy (TEM), atomic force microscopy (AFM) and scanning electron microscope (SEM) were used to verify the release of nanoparticles from nanocomposite films. The three factors model was applied for the quantitative and qualitative risk assessment of the release of graphene and carbon nanotubes from nanocomposite wastes for these scenarios. Safety concern is discussed in respect to the existing regulations for nanowaste stream.


2019 ◽  
Vol 59 (9) ◽  
pp. 1874-1881 ◽  
Author(s):  
Zarif Farhana Mohd Aris ◽  
Vishal Bavishi ◽  
Rashmi Sharma ◽  
Ramaswamy Nagarajan

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4910 ◽  
Author(s):  
Alejandro Aragón-Gutierrez ◽  
Marina P. Arrieta ◽  
Mar López-González ◽  
Marta Fernández-García ◽  
Daniel López

Bionanocomposites based on poly (lactic acid) (PLA) and silica aerogel (SiA) were developed by means of melt extrusion process. PLA-SiA composite films were plasticized with 15 wt.% of acetyl (tributyl citrate) (ATBC) to facilitate the PLA processability as well as to attain flexible polymeric formulations for films for food packaging purposes. Meanwhile, SiA was added in four different proportions (0.5, 1, 3 and 5 wt.%) to evaluate the ability of SiA to improve the thermal, mechanical, and barrier performance of the bionanocomposites. The mechanical performance, thermal stability as well as the barrier properties against different gases (carbon dioxide, nitrogen, and oxygen) of the bionanocomposites were evaluated. It was observed that the addition of 3 wt.% of SiA to the plasticized PLA-ATBC matrix showed simultaneously an improvement on the thermal stability as well as the mechanical and barrier performance of films. Finally, PLA-SiA film formulations were disintegrated in compost at the lab-scale level. The combination of ATBC and SiA sped up the disintegration of PLA matrix. Thus, the bionanocomposites produced here show great potential as sustainable polymeric formulations with interest in the food packaging sector.


Sign in / Sign up

Export Citation Format

Share Document