Structural basis of the cooperative activation of type II citrate synthase (HyCS) from Hymenobacter sp. PAMC 26554

2021 ◽  
Vol 183 ◽  
pp. 213-221
Author(s):  
Sun-Ha Park ◽  
Chang Woo Lee ◽  
Da-Woon Bae ◽  
Hackwon Do ◽  
Chang-Sook Jeong ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Christopher Agnew ◽  
Pelin Ayaz ◽  
Risa Kashima ◽  
Hanna S. Loving ◽  
Prajakta Ghatpande ◽  
...  

AbstractUpon ligand binding, bone morphogenetic protein (BMP) receptors form active tetrameric complexes, comprised of two type I and two type II receptors, which then transmit signals to SMAD proteins. The link between receptor tetramerization and the mechanism of kinase activation, however, has not been elucidated. Here, using hydrogen deuterium exchange mass spectrometry (HDX-MS), small angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations, combined with analysis of SMAD signaling, we show that the kinase domain of the type I receptor ALK2 and type II receptor BMPR2 form a heterodimeric complex via their C-terminal lobes. Formation of this dimer is essential for ligand-induced receptor signaling and is targeted by mutations in BMPR2 in patients with pulmonary arterial hypertension (PAH). We further show that the type I/type II kinase domain heterodimer serves as the scaffold for assembly of the active tetrameric receptor complexes to enable phosphorylation of the GS domain and activation of SMADs.


1992 ◽  
Vol 73 (3) ◽  
pp. 812-816 ◽  
Author(s):  
A. Aniansson ◽  
G. Grimby ◽  
M. Hedberg

Muscle strength and muscle morphology have been studied three times during a period of 11 yr in nine elderly men. On the last occasion the average age was 80.4 (range 79–82) yr. Body cell mass decreased by 6% and muscle strength for knee extension, measured by means of isometric and concentric isokinetic (30–60 degrees/s) recordings, declined by 25–35% over the 11-yr period. Between 76 and 80 yr of age only the isokinetic strength for 30 degrees/s decreased significantly. Muscle fiber composition in the vastus lateralis did not change between 69 and 76 yr of age, but there was a significant reduction in the proportion of type IIb fibers from 76 to 80 yr. The decrease in type II fiber areas was not significant between 69 and 76 yr of age (as in a larger sample from the same population), but a significant increase in both type I and type II fiber areas was recorded from 76 to 80 yr of age and biceps brachii showed similar tendencies. In the same period, the enzymatic activities of myokinase and lactate dehydrogenase subsided in the vastus lateralis, but there was no change for triose phosphate dehydrogenase, 3-hydroxy-CoA-dehydrogenase, and citrate synthase. The muscle fiber hypertrophy in this group of elderly men with maintained physical activity between 76 and 80 yr of age is interpreted as a compensatory adaptation for the loss of motor units. In addition, the adaptation with respect to oxidative capacities seems to be maintained at this age.


2020 ◽  
Vol 132 (48) ◽  
pp. 21719-21724
Author(s):  
Benjamin Dose ◽  
Claudia Ross ◽  
Sarah P. Niehs ◽  
Kirstin Scherlach ◽  
Johanna P. Bauer ◽  
...  

2013 ◽  
Vol 41 (22) ◽  
pp. 10630-10640 ◽  
Author(s):  
Chyuan-Chuan Wu ◽  
Yi-Ching Li ◽  
Ying-Ren Wang ◽  
Tsai-Kun Li ◽  
Nei-Li Chan

2018 ◽  
Author(s):  
Wouter Van Putte ◽  
Tatjana De Vos ◽  
Wim Van Den Broeck ◽  
Henning Stahlberg ◽  
Misha Kudryashev ◽  
...  

AbstractThe type II secretion system (T2SS), a protein complex spanning the bacterial envelope, is pivotal to bacterial pathogenicity. Central to T2SS function is the extrusion of protein cargos from the periplasm into the extracellular environment mediated by a pseudopilus and motorized by a cytosolic ATPase. GspF, an inner-membrane component of T2SS has long been considered to be a key player in this process, yet the structural basis of its role had remained elusive. Here, we employed single-particle electron microscopy based on XcpS (GspF) from the T2SS of pathogenicP. aeruginosastabilized by a nanobody, to show that XcpS adopts a dimeric structure mediated by its transmembrane helices. This assembly matches in terms of overall organization and dimensions the basal inner-membrane cassette of a T2SS machinery. Thus, GspF is poised to serve as an adaptor involved in the mediation of propeller-like torque generated by the motor ATPase to the secretion pseudopilus.Non-technical author summaryAntibiotic resistance by bacteria imposes a worldwide threat that can only be overcome through a multi-front approach: preventive actions and the parallel development of novel molecular strategies to combat antibiotic resistance mechanisms. One such strategy might focus on antivirulence drugs that prevent host invasion and spreading by pathogenic bacteria, without shutting down essential functions related to bacterial survival. The rationale behind such an approach is that it might limit selective pressure leading to slower evolutionary rates of resistant bacterial strains. Bacterial secretion systems are an appropriate target for such therapeutic approaches as their impairment will inhibit the secretion of a multitude of virulence factors. This study focuses on the structural characterization of one of the proteins residing in the inner-membrane cassette of the type II secretion system (T2SS), a multi-protein complex in multiple opportunistic pathogens that secretes virulence factors. The targeted protein is essential for the assembly of the pseudopilus, a rod-like supramolecular structure that propels the secretion of virulence factors by pathogenic Gram-negative bacteria. Our study crucially complements growing evidence supporting a rotational assembly model of the pseudopilus and contributes to a better understanding of the functioning of the T2SS and the related secretion systems. We envisage that such knowledge will facilitate targeting of these systems for therapeutic purposes.


1983 ◽  
Vol 244 (3) ◽  
pp. C276-C287 ◽  
Author(s):  
M. M. Chi ◽  
C. S. Hintz ◽  
E. F. Coyle ◽  
W. H. Martin ◽  
J. L. Ivy ◽  
...  

Muscle biopsies were obtained from three cyclists and four runners at the end of 10-24 mo of intensive training and after intervals of detraining up to 12 wk. Control samples came from four untrained persons and four former athletes. Macro mixed fiber samples were assayed for lactate dehydrogenase, adenylate kinase, glycogen phosphorylase, citrate synthase, malate dehydrogenase, beta-hydroxyacyl-CoA dehydrogenase, succinate dehydrogenase, beta-hydroxybutyrate dehydrogenase, creatine kinase, hexokinase, 1-phosphofructokinase, fructosebisphosphatase, protein, and total creatine. In the case of three trained persons and two controls, the first six of the enzymes were also measured in individual fibers. Before detraining, enzymes of oxidative metabolism were substantially higher than in controls, and differences in levels between type I and type II fibers were smaller. During detraining, oxidative enzymes were decreased in both fiber types but the type II fibers did not fall to control levels even after 12 wk. Phosphorylase increased with detraining in both fiber types. The same is true for lactate dehydrogenase and adenylate kinase, except in the case of the type I fibers of one individual. Among the other six enzymes (measured in mixed fiber samples), only hexokinase was consistently affected (decreased) by detraining.


Sign in / Sign up

Export Citation Format

Share Document