Effects of detraining on enzymes of energy metabolism in individual human muscle fibers

1983 ◽  
Vol 244 (3) ◽  
pp. C276-C287 ◽  
Author(s):  
M. M. Chi ◽  
C. S. Hintz ◽  
E. F. Coyle ◽  
W. H. Martin ◽  
J. L. Ivy ◽  
...  

Muscle biopsies were obtained from three cyclists and four runners at the end of 10-24 mo of intensive training and after intervals of detraining up to 12 wk. Control samples came from four untrained persons and four former athletes. Macro mixed fiber samples were assayed for lactate dehydrogenase, adenylate kinase, glycogen phosphorylase, citrate synthase, malate dehydrogenase, beta-hydroxyacyl-CoA dehydrogenase, succinate dehydrogenase, beta-hydroxybutyrate dehydrogenase, creatine kinase, hexokinase, 1-phosphofructokinase, fructosebisphosphatase, protein, and total creatine. In the case of three trained persons and two controls, the first six of the enzymes were also measured in individual fibers. Before detraining, enzymes of oxidative metabolism were substantially higher than in controls, and differences in levels between type I and type II fibers were smaller. During detraining, oxidative enzymes were decreased in both fiber types but the type II fibers did not fall to control levels even after 12 wk. Phosphorylase increased with detraining in both fiber types. The same is true for lactate dehydrogenase and adenylate kinase, except in the case of the type I fibers of one individual. Among the other six enzymes (measured in mixed fiber samples), only hexokinase was consistently affected (decreased) by detraining.

1984 ◽  
Vol 32 (11) ◽  
pp. 1211-1216 ◽  
Author(s):  
P M Nemeth ◽  
O H Lowry

An attempt was made to determine the relationship of myoglobin content to specific fiber types in human muscle. Biopsies were obtained from biceps brachii, vastus lateralis, and gastrocnemius muscles of untrained subjects and from the vastus lateralis muscle of a highly trained athlete at peak training and at intervals of no training (detraining). Individual muscle fibers were assayed, by quantitative microanalytical methods, for myoglobin, lactate dehydrogenase, malate dehydrogenase, citrate synthase, beta-hydroxyacyl-coenzyme A dehydrogenase, and adenylokinase activities all on the same fiber. The enzyme levels were used to classify the fibers into type I or II. The results show that the content of myoglobin in human muscle does not differ greatly between fiber types in contrast to other species. The type II fibers contained, on the average, at least two-thirds as much myoglobin as type I fibers. The concentration of myoglobin did not change in either fiber type during detraining (84 days), despite marked changes in lactate dehydrogenase, adenylokinase and the three oxidative enzymes.


1989 ◽  
Vol 66 (1) ◽  
pp. 465-475 ◽  
Author(s):  
R. H. Fitts ◽  
D. L. Costill ◽  
P. R. Gardetto

This study examined the effect of a typical collegiate swim-training program and an intensified 10-day training period on the peak tension (Po), negative log molar Ca2+ concentration (pCa)-force, and maximal shortening speed (Vmax) of the slow-twitch type I and fast-twitch type II fibers of the deltoid muscle. Over a 10-wk period, the swimmers averaged 4,266 +/- 264 m/day swimming intermittent bouts of front crawl, kicking, or pulling. The training program induced an almost twofold increase in the mitochondrial marker enzyme citrate synthase. Po of the single fibers was not altered by either the training or 10-day intensive training programs, and no significant differences were observed in the Po (kg/cm2) of type I compared with the type II fibers. The type II fiber diameters were significantly larger than the type I fibers (94 +/- 4 vs. 80 +/- 2 microns), and although fiber diameters were unaffected by the training, the 10-day intensive training significantly reduced the type II fiber diameter. The type I fibers from the trained swimmers showed pCa-force curves shifted to the right such that higher free Ca2+ levels were required to elicit a given percent of Po (for values less than 0.5 Po). The activation threshold (pCa) for the onset of tension and the pCa required to elicit one-half maximal tension were not altered by the training in either fiber type. Fiber Vmax (measured by the slack test) was fivefold higher in type II compared with type I fibers (4.85 +/- 0.50 vs. 0.86 +/- 0.04 fiber lengths/s). The exercise-training program significantly increased and decreased the Vmax of the slow and fast fibers, respectively. The 10 days of intensified training produced a further significant decrease in the Vmax of the type II fibers. After a period of detraining, the Vmax of both fiber types returned to the control level. The force-velocity relation was not significantly altered in either fiber type by the swim training; however, the intensified training significantly depressed the velocity of the type II fiber at all loads studied. The Vmax changes with exercise training are likely explained by an exercise-induced expression of fast myosin in slow fibers and slow myosin in fast fibers.


1975 ◽  
Vol 23 (11) ◽  
pp. 808-827 ◽  
Author(s):  
M M Jaweed ◽  
G J Herbison ◽  
J F Ditunno

A histochemical study, using myosin-adenosine triphosphatase activity at pH 9.4, was conducted in soleus and plantaris muscles of adult rats, after bilateral crushing of the sciatic nerve at the sciatic notch. The changes in fiber diameter and per cent composition of type I and type II fibers plus muscle weights were evaluated along the course of denervation-reinnervation curve at 1, 2, 3, 4 and 6 weeks postnerve crush. The study revealed that in the early denervation phase (up to 2 weeks postcrush) both the slow and fast muscles, soleus and plantaris, resepctively, atrophied similarly in muscle mass. Soleus increased in the number of type II fibers, which may be attributed to "disuse" effect. During the same period, the type I fibers of soleus atrophied as much or slightly more than the type II fibers; whereas the type II fibers of plantaris atrophied significantly more than the type I fibers, reflecting that the process of denervation, in its early stages, may affect the two fiber types differentially in the slow and fast muscles. It was deduced that the type I fibers of plantaris may be essentially different in the slow (soleus) and fast (plantaris) muscles under study. The onset of reinnervation, as determined by the increase in muscle weight and fiber diameter of the major fiber type, occurred in soleus and plantaris at 2 and 3 weeks postcrush, respectively, which confirms the earlier hypotheses that the slow muscles are reinnervated sooner than the fast muscles. It is suggested that the reinnervation of muscle after crush injury may be specific to the muscle type or its predominant fiber type.


2014 ◽  
Vol 117 (5) ◽  
pp. 544-555 ◽  
Author(s):  
Marc P. Morissette ◽  
Shanel E. Susser ◽  
Andrew N. Stammers ◽  
Kimberley A. O'Hara ◽  
Phillip F. Gardiner ◽  
...  

The regulatory role of adenosine monophosphate-activated protein kinase (AMPK)-α2 on sarcoplasmic reticulum calcium-ATPase (SERCA) 1a and SERCA2a in different skeletal muscle fiber types has yet to be elucidated. Sedentary (Sed) or exercise-trained (Ex) wild-type (WT) and AMPKα2-kinase dead (KD) transgenic mice, which overexpress a mutated and inactivated AMPKα2 subunit, were utilized to characterize how genotype or exercise training influenced the regulation of SERCA isoforms in gastrocnemius. As expected, both Sed and Ex KD mice had >40% lower AMPK phosphorylation and 30% lower SERCA1a protein than WT mice ( P < 0.05). In contrast, SERCA2a protein was not different among KD and WT mice. Exercise increased SERCA1a and SERCA2a protein content among WT and KD mice, compared with their Sed counterparts. Maximal SERCA activity was lower in KD mice, compared with WT. Total phospholamban protein was higher in KD mice than in WT and lower in Ex compared with Sed mice. Exercise training increased phospholamban Ser16 phosphorylation in WT mice. Laser capture microdissection and quantitative PCR indicated that SERCA1a mRNA expression among type I fibers was not altered by genotype or exercise, but SERCA2a mRNA was increased 30-fold in WT+Ex, compared with WT+Sed. In contrast, the exercise-stimulated increase for SERCA2a mRNA was blunted in KD mice. Exercise upregulated SERCA1a and SERCA2a mRNA among type II fibers, but was not altered by genotype. Collectively, these data suggest that exercise differentially influences SERCA isoform expression in type I and type II fibers. Additionally, AMPKα2 influences the regulation of SERCA2a mRNA in type I skeletal muscle fibers following exercise training.


1993 ◽  
Vol 74 (2) ◽  
pp. 742-749 ◽  
Author(s):  
D. J. Prezant ◽  
D. E. Valentine ◽  
H. H. Kim ◽  
E. I. Gentry

The effects of 4.5 days of acute starvation, either alone or followed by refeeding (ad libitum), on diaphragm contractility, fatigue, and fiber types were studied in male rats. Contractility and fatigue resistance indexes were measured in an in vitro costal diaphragm strip preparation with direct stimulation at 37 degrees C. Compared with controls, starvation produced a 28 +/- 1% (P < 0.001) reduction in body weight and an 18 +/- 4% (P < 0.001) reduction in costal diaphragm weight. Twitch and tetanic tensions (normalized for weight or cross-sectional area) were not reduced by starvation. Starvation produced significant increases in fatigue resistance indexes after a 5-Hz stimulation paradigm but not after a 100-Hz paradigm, supporting the hypothesis that fatigue resistance is dependent on the energy demand of a given paradigm. The proportions of type I and type II fibers were similar between diaphragms of starved and control rats, but the cross-sectional area of type II fibers decreased significantly by 18 +/- 7% (P < 0.01). Thus, despite the significant decrease in diaphragm weight after starvation, contractility was preserved and fatigue resistance was increased (low-output paradigm). This is consistent with the decrease in type II fiber area. Refeeding restored all parameters so that there were no longer significant differences in body or diaphragm weight, contractility, fatigue, or fiber types.


1998 ◽  
Vol 84 (5) ◽  
pp. 1776-1787 ◽  
Author(s):  
Robert H. Fitts ◽  
Sue C. Bodine ◽  
Janell G. Romatowski ◽  
Jeffrey J. Widrick

In this study, we determined the contractile properties of single chemically skinned fibers prepared from the medial gastrocnemius (MG) and soleus (Sol) muscles of adult male rhesus monkeys and assessed the effects of the spaceflight living facility known as the experiment support primate facility (ESOP). Muscle biopsies were obtained 4 wk before and immediately after an 18-day ESOP sit, and fiber type was determined by immunohistochemical techniques. The MG slow type I fiber was significantly smaller than the MG type II, Sol type I, and Sol type II fibers. The ESOP sit caused a significant reduction in the diameter of type I and type I/II (hybrid) fibers of Sol and MG type II and hybrid fibers but no shift in fiber type distribution. Single-fiber peak force (mN and kN/m2) was similar between fiber types and was not significantly different from values previously reported for other species. The ESOP sit significantly reduced the force (mN) of Sol type I and MG type II fibers. This decline was entirely explained by the atrophy of these fiber types because the force per cross-sectional area (kN/m2) was not altered. Peak power of Sol and MG fast type II fiber was 5 and 8.5 times that of slow type I fiber, respectively. The ESOP sit reduced peak power by 25 and 18% in Sol type I and MG type II fibers, respectively, and, for the former fiber type, shifted the force-pCa relationship to the right, increasing the Ca2+ activation threshold and the free Ca2+concentration, eliciting half-maximal activation. The ESOP sit had no effect on the maximal shortening velocity ( V o) of any fiber type. V o of the hybrid fibers was only slightly higher than that of slow type I fibers. This result supports the hypothesis that in hybrid fibers the slow myosin heavy chain would be expected to have a disproportionately greater influence on V o.


2009 ◽  
Vol 107 (4) ◽  
pp. 1138-1143 ◽  
Author(s):  
Martijn A. Bekedam ◽  
Brechje J. van Beek-Harmsen ◽  
Willem van Mechelen ◽  
Anco Boonstra ◽  
Willem J. van der Laarse

The purpose of this study was to determine the myoglobin concentration in skeletal muscle fibers of chronic heart failure (CHF) patients and to calculate the effect of myoglobin on oxygen buffering and facilitated diffusion. Myoglobin concentration, succinate dehydrogenase (SDH) activity, and cross-sectional area of individual muscle fibers from the vastus lateralis of five control and nine CHF patients were determined using calibrated histochemistry. CHF patients compared with control subjects were similar with respect to myoglobin concentration: type I fibers 0.69 ± 0.11 mM (mean ± SD), type II fibers 0.52 ± 0.07 mM in CHF vs. type I fibers 0.70 ± 0.09 mM, type II fibers 0.49 ± 0.07 mM in control, whereas SDH activity was significantly lower in CHF in both fiber types ( P < 0.01). The myoglobin concentration in type I fibers was higher than in type II fibers ( P < 0.01). Consequently, the oxygen buffering capacity, calculated from myoglobin concentration/SDH activity was increased in CHF: type I fibers 11.4 ± 2.1 s, type II fibers 13.6 ± 3.9 s in CHF vs. type I fibers 7.8 ± 0.9 s, type II fibers 7.5 ± 1.0 s in control, all P < 0.01). The calculated extracellular oxygen tension required to prevent core anoxia (Po2crit) in muscle fibers was similar when controls were compared with patients in type I fibers 10.3 ± 0.9 Torr in CHF and 11.5 ± 3.3 Torr in control, but was lower in type II fibers of patients 6.1 ± 2.8 Torr in CHF and 14.7 ± 6.2 Torr in control, P < 0.01. The lower Po2crit of type II fibers may facilitate oxygen extraction from capillaries. Reduced exercise tolerance in CHF is not due to myoglobin deficiency.


2009 ◽  
Vol 106 (4) ◽  
pp. 1412-1418 ◽  
Author(s):  
Jörgen Tannerstedt ◽  
William Apró ◽  
Eva Blomstrand

The molecular mechanisms by which resistance exercise enlarges muscle mass, particularly the mass of fast-twitch type II fibers, are likely to involve enhanced phosphorylation/activation of key enzymes regulating protein synthesis. The hypothesis is that resistance exercise influences the phosphorylation of such key signaling proteins to a greater extent in type II than in type I fibers. Six recreationally active male subjects performed four sets of six maximal lengthening contractions with one leg. Muscle biopsies were taken from the vastus lateralis before and immediately after exercise and following 1 and 2 h of recovery. Samples were freeze-dried, and individual muscle fibers were dissected out and identified as type I or type II after staining for myosin ATPase. Phosphorylation of p70S6kon Thr389and S6 in type II fibers was increased three-to fourfold and six- to ninefold ( P < 0.05), respectively, 1 and 2 h after exercise, whereas phosphorylation in type I fibers remained unchanged. Phosphorylation of Akt, mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) was unaltered in both fiber types, whereas that of eukaryotic elongation factor 2 (eEF2) was attenuated 20–45% ( P < 0.05) in type II fibers during recovery. Phosphorylation of ERK1/2 was elevated six- to sevenfold ( P < 0.05) immediately after exercise, and p38 MAPK phosphorylation was increased three- to fourfold ( P < 0.05) for as long as 1 h after exercise in both types of fibers, although the level was markedly higher in type II fibers ( P < 0.05). In conclusion, the elevation of p70S6kand the reduction of eEF2 phosphorylation in the type II fibers following resistance exercise suggest stimulation of protein synthesis, which may contribute to a more pronounced enlargement of these fibers. Our findings also suggest that p70S6kis activated, at least in part, via pathways not involving Akt-mTOR and MAPK.


2013 ◽  
Vol 115 (5) ◽  
pp. 667-679 ◽  
Author(s):  
R. H. Fitts ◽  
P. A. Colloton ◽  
S. W. Trappe ◽  
D. L. Costill ◽  
J. L. W. Bain ◽  
...  

Our primary goal was to determine the effects of 6-mo flight on the International Space Station (ISS) on selected anaerobic and aerobic enzymes, and the content of glycogen and lipids in slow and fast fibers of the soleus and gastrocnemius. Following local anesthesia, biopsies were obtained from nine ISS crew members ∼45 days preflight and on landing day (R+0) postflight. We subdivided the crew into those who ran 200 min/wk or more (high treadmill, HT) in-flight from those who ran <100 min/wk (low treadmill, LT). In the LT group, there was a loss of lipid in soleus type I fibers, and muscle glycogen significantly increased in soleus fiber types postflight. Soleus cytochrome oxidase (CO) activity was significantly depressed postflight in the type I fiber. This was attributed to the LT group where CO activity was reduced 59%. Otherwise, there was no change in the crew mean for type I or IIa fiber glycolytic or mitochondrial enzyme activities pre- vs. postflight in either muscle. However, two of the three HT subjects ( Subjects E and H) showed significant increases in both β-hydroxyacyl-CoA dehydrogenase and citrate synthase in the soleus type I fibers, and Subject E, exhibiting the largest increase in soleus oxidative enzymes, was the only subject to show a significant decrease in glycolytic enzyme activity. It is apparent that crew members performing adequate treadmill running can maintain calf muscle enzymes, which suggests that increased fatigue with weightlessness cannot be directly caused by a decline in muscle enzyme capacity.


2001 ◽  
Vol 280 (6) ◽  
pp. E994-E999 ◽  
Author(s):  
Amy E. Halseth ◽  
Deanna P. Bracy ◽  
David H. Wasserman

Skeletal muscle glucose uptake requires delivery of glucose to the sarcolemma, transport across the sarcolemma, and the irreversible phosphorylation of glucose by hexokinase (HK) inside the cell. Here, a novel method was used in the conscious rat to address the roles of these three steps in controlling the rate of glucose uptake in soleus, a muscle comprised of type I fibers, and two muscles comprised of type II fibers. Experiments were performed on conscious rats under basal conditions or during hyperinsulinemic euglycemic clamps. Rats received primed, constant infusions of 3- O-methyl-[3H]glucose (3- O-MG) and [1-14C]mannitol. Total muscle glucose concentration and the steady-state ratio of intracellular to extracellular 3- O-MG concentration, which distributes based on the transsarcolemmal glucose gradient (TSGG), were used to calculate glucose concentrations at the inner and outer sarcolemmal surfaces ([G]im and [G]om, respectively) in muscle. Muscle glucose uptake was much lower in muscle comprised of type II fibers than in soleus under both basal and insulin-stimulated conditions. Under all conditions, the TSGG in type II muscle exceeded that in soleus, indicating that glucose transport plays a more important role to limit glucose uptake in type II muscle. Although hyperinsulinemia increased [G]im in soleus, indicating that phosphorylation was a limiting factor, type II muscle was limited primarily by glucose delivery and glucose transport. In conclusion, the relative importance of glucose delivery, transport, and phosphorylation in controlling the rate of insulin-stimulated muscle glucose uptake varies between muscle fiber types, with glucose delivery and transport being the primary limiting factors in type II muscle.


Sign in / Sign up

Export Citation Format

Share Document