Exploring new marine bacterial species, Alcaligenes faecalis Alca F2018 valued for bioconversion of shrimp chitin to chitosan for concomitant biotechnological applications

Author(s):  
Ohood A. Amer ◽  
Sameh S. Ali ◽  
Maha Azab ◽  
Wagih A. El-Shouny ◽  
Jianzhong Sun ◽  
...  
2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Nahed Al Laham ◽  
Kalyan D. Chavda ◽  
Astrid V. Cienfuegos-Gallet ◽  
Barry N. Kreiswirth ◽  
Liang Chen

ABSTRACT Carbapenemase-producing Gram-negative bacteria (CP-GNB) have increasingly spread worldwide, and different families of carbapenemases have been identified in various bacterial species. Here, we report the identification of five VIM metallo-β-lactamase-producing Alcaligenes faecalis isolates associated with a small outbreak in a large hospital in Gaza, Palestine. Next-generation sequencing analysis showed bla VIM-2 is harbored by a chromosomal genomic island among three strains, while bla VIM-4 is carried by a novel plasmid in two strains.


2013 ◽  
Vol 6 (1) ◽  
pp. 125-131 ◽  
Author(s):  
S. Silambarasan ◽  
J. Abraham

Metal pollution is a growing problem and microbes have adapted to tolerate the presence of metals and even use them. The investigation was carried out to screen for bisorption property of metals by bacteria and check for correlation between tolerance to heavy metals and antibiotic resistance. Soil samples were collected from Palar River basin site of Vellore and five distinct bacteria were isolated. Antibiotic resistance (bacitracin, chloramphenicol, streptomycin, rifampicin, penicillin and ampicillin) was checked and tolerance to heavy metals was screened (Cd, Pb, Cu and Zn). It was found that most of the bacterial isolates had multiple antibiotic resistances which might be due to the stress caused by heavy metals released into the Palar river basin, Vellore. The multiple antibiotics resistance of this bacterial species was found to be associated with tolerance to metals. Biosorption studies revealed that Alcaligenes faecalis could tolerate 59% Cd, 61% Pb, 40% Cu, 39% Zn and Staphylococcus aureus removed 60% Cd, 63% Pb, 42% Cu, 41% Zn and Streptococcus lactis absorbed 61% Cd, 57% Pb, 37% Cu, 38% Zn and Micrococcus luteus reduced 56% Cd, 61% Pb, 39% Cu, 41% Zn and Enterobacter aerogenes removed 60% Cd, 55% Pb, 62% Cu, 67% Zn. Keywords: Antibiotic resistant; Heavy metal tolerance; Biosorption; Metal polluted soils. © 2014 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: http://dx.doi.org/10.3329/jsr.v6i1.14678 J. Sci. Res. 6 (1), 125-131 (2014)      


Marine Drugs ◽  
2018 ◽  
Vol 16 (12) ◽  
pp. 499 ◽  
Author(s):  
Andrés Andreo-Vidal ◽  
Antonio Sanchez-Amat ◽  
Jonatan Campillo-Brocal

The marine environment is a rich source of antimicrobial compounds with promising pharmaceutical and biotechnological applications. The Pseudoalteromonas genus harbors one of the highest proportions of bacterial species producing antimicrobial molecules. For decades, the presence of proteins with L-amino acid oxidase (LAAO) and antimicrobial activity in Pseudoalteromonas luteoviolacea has been known. Here, we present for the first time the identification, cloning, characterization and phylogenetic analysis of Pl-LAAO, the enzyme responsible for both LAAO and antimicrobial activity in P. luteoviolacea strain CPMOR-2. Pl-LAAO is a flavoprotein of a broad substrate range, in which the hydrogen peroxide generated in the LAAO reaction is responsible for the antimicrobial activity. So far, no protein with a sequence similarity to Pl-LAAO has been cloned or characterized, with this being the first report on a flavin adenine dinucleotide (FAD)-containing LAAO with antimicrobial activity from a marine microorganism. Our results revealed that 20.4% of the sequenced Pseudoalteromonas strains (specifically, 66.6% of P. luteoviolacea strains) contain Pl-laao similar genes, which constitutes a well-defined phylogenetic group. In summary, this work provides insights into the biological significance of antimicrobial LAAOs in the Pseudoalteromonas genus and shows an effective approach for the detection of novel LAAOs, whose study may be useful for biotechnological applications.


Microbiology ◽  
2009 ◽  
Vol 155 (6) ◽  
pp. 1934-1939 ◽  
Author(s):  
Soichiro Kimura ◽  
Kazuhiro Tateda ◽  
Yoshikazu Ishii ◽  
Manabu Horikawa ◽  
Shinichi Miyairi ◽  
...  

Bacteria commonly communicate with each other by a cell-to-cell signalling mechanism known as quorum sensing (QS). Recent studies have shown that the Las QS autoinducer N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) of Pseudomonas aeruginosa performs a variety of functions not only in intraspecies communication, but also in interspecies and interkingdom interactions. In this study, we report the effects of Pseudomonas 3-oxo-C12-HSL on the growth and suppression of virulence factors in other bacterial species that frequently co-exist with Ps. aeruginosa in nature. It was found that 3-oxo-C12-HSL, but not its analogues, suppressed the growth of Legionella pneumophila in a dose-dependent manner. However, 3-oxo-C12-HSL did not exhibit a growth-suppressive effect on Serratia marcescens, Proteus mirabilis, Escherichia coli, Alcaligenes faecalis and Stenotrophomonas maltophilia. A concentration of 50 μM 3-oxo-C12-HSL completely inhibited the growth of L. pneumophila. Additionally, a significant suppression of biofilm formation was demonstrated in L. pneumophila exposed to 3-oxo-C12-HSL. Our results suggest that the Pseudomonas QS autoinducer 3-oxo-C12-HSL exerts both bacteriostatic and virulence factor-suppressive activities on L. pneumophila alone.


2020 ◽  
Vol 48 (4) ◽  
pp. 2026-2034 ◽  
Author(s):  
Iana Fedorova ◽  
Anatolii Arseniev ◽  
Polina Selkova ◽  
Georgii Pobegalov ◽  
Ignatiy Goryanin ◽  
...  

Abstract Type II CRISPR–Cas9 RNA-guided nucleases are widely used for genome engineering. Type II-A SpCas9 protein from Streptococcus pyogenes is the most investigated and highly used enzyme of its class. Nevertheless, it has some drawbacks, including a relatively big size, imperfect specificity and restriction to DNA targets flanked by an NGG PAM sequence. Cas9 orthologs from other bacterial species may provide a rich and largely untapped source of biochemical diversity, which can help to overcome the limitations of SpCas9. Here, we characterize CcCas9, a Type II-C CRISPR nuclease from Clostridium cellulolyticum H10. We show that CcCas9 is an active endonuclease of comparatively small size that recognizes a novel two-nucleotide PAM sequence. The CcCas9 can potentially broaden the existing scope of biotechnological applications of Cas9 nucleases and may be particularly advantageous for genome editing of C. cellulolyticum H10, a bacterium considered to be a promising biofuel producer.


Author(s):  
Leila Gasmi ◽  
Juan Ferré ◽  
Salvador Herrero

Lectins are carbohydrate-interacting proteins playing a pivotal role in multiple physiological and developmental aspects of all organisms. They can specifically interact with different bacterial and viral pathogens through the carbohydrate-recognition domains (CRD). In addition, lectins are also of biotechnological interest because of their potential use as biosensor for capturing and identification of bacterial species. In this work, we have characterized the bacterial agglutination properties of three C-type lectins from the Lepidoptera Spodoptera exigua. One of these lectins, BLL2, was able to agglutinate cells from a broad range of bacterial species at an extremely low concentration, becoming a very interesting protein to be used as biosensor or other biotechnological applications involving bacterial capturing.


2021 ◽  
Vol 9 (3) ◽  
pp. 614
Author(s):  
Mohamad Syazwan Ngalimat ◽  
Radin Shafierul Radin Yahaya ◽  
Mohamad Malik Al-adil Baharudin ◽  
Syafiqah Mohd. Yaminudin ◽  
Murni Karim ◽  
...  

Bacteria under the operational group Bacillus amyloliquefaciens (OGBa) are all Gram-positive, endospore-forming, and rod-shaped. Taxonomically, the OGBa belongs to the Bacillus subtilis species complex, family Bacillaceae, class Bacilli, and phylum Firmicutes. To date, the OGBa comprises four bacterial species: Bacillus amyloliquefaciens, Bacillus siamensis, Bacillus velezensis and Bacillus nakamurai. They are widely distributed in various niches including soil, plants, food, and water. A resurgence in genome mining has caused an increased focus on the biotechnological applications of bacterial species belonging to the OGBa. The members of OGBa are known as plant growth-promoting bacteria (PGPB) due to their abilities to fix nitrogen, solubilize phosphate, and produce siderophore and phytohormones, as well as antimicrobial compounds. Moreover, they are also reported to produce various enzymes including α-amylase, protease, lipase, cellulase, xylanase, pectinase, aminotransferase, barnase, peroxidase, and laccase. Antimicrobial compounds that able to inhibit the growth of pathogens including non-ribosomal peptides and polyketides are also produced by these bacteria. Within the OGBa, various B. velezensis strains are promising for use as probiotics for animals and fishes. Genome mining has revealed the potential applications of members of OGBa for removing organophosphorus (OPs) pesticides. Thus, this review focused on the applicability of members of OGBa as plant growth promoters, biocontrol agents, probiotics, bioremediation agents, as well as producers of commercial enzymes and antibiotics. Here, the bioformulations and commercial products available based on these bacteria are also highlighted. This review will better facilitate understandings of members of OGBa and their biotechnological applications.


Author(s):  
H. Engelhardt ◽  
R. Guckenberger ◽  
W. Baumeister

Bacterial photosynthetic membranes contain, apart from lipids and electron transport components, reaction centre (RC) and light harvesting (LH) polypeptides as the main components. The RC-LH complexes in Rhodopseudomonas viridis membranes are known since quite seme time to form a hexagonal lattice structure in vivo; hence this membrane attracted the particular attention of electron microscopists. Contrary to previous claims in the literature we found, however, that 2-D periodically organized photosynthetic membranes are not a unique feature of Rhodopseudomonas viridis. At least five bacterial species, all bacteriophyll b - containing, possess membranes with the RC-LH complexes regularly arrayed. All these membranes appear to have a similar lattice structure and fine-morphology. The lattice spacings of the Ectothiorhodospira haloohloris, Ectothiorhodospira abdelmalekii and Rhodopseudomonas viridis membranes are close to 13 nm, those of Thiocapsa pfennigii and Rhodopseudomonas sulfoviridis are slightly smaller (∼12.5 nm).


Nature ◽  
2020 ◽  
Vol 588 (7839) ◽  
pp. 591-592
Author(s):  
Jen Nguyen ◽  
Carolina Tropini
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document