scholarly journals Crosslinkers for polysaccharides and proteins: Synthesis conditions, mechanisms, and crosslinking efficiency, a review

Author(s):  
Alex Carvalho Alavarse ◽  
Emilli Caroline Garcia Frachini ◽  
Rafael Leonardo Cruz Gomes da Silva ◽  
Vitoria Hashimoto Lima ◽  
Amin Shavandi ◽  
...  
Keyword(s):  
2020 ◽  
pp. 1-18
Author(s):  
Yu.V. Bilokopytov ◽  
◽  
S.L. Melnykova ◽  
N.Yu. Khimach ◽  
◽  
...  

CO2 is a harmful greenhouse gas, a product of chemical emissions, the combustion of fossil fuels and car exhausts, and it is a widely available source of carbon. The review considers various ways of hydrogenation of carbon dioxide into components of motor fuels - methanol, dimethyl ether, ethanol, hydrocarbons - in the presence of heterogeneous catalysts. At each route of conversion of CO2 (into oxygenates or hydrocarbons) the first stage is the formation of CO by the reverse water gas shift (rWGS) reaction, which must be taken into account when catalysts of process are choosing. The influence of chemical nature, specific surface area, particle size and interaction between catalyst components, as well as the method of its production on the CO2 conversion processes is analyzed. It is noted that the main active components of CO2 conversion into methanol are copper atoms and ions which interact with the oxide components of the catalyst. There is a positive effect of other metals oxides additives with strong basic centers on the surface on the activity of the traditional copper-zinc-aluminum oxide catalyst for the synthesis of methanol from the synthesis gas. The most active catalysts for the synthesis of DME from CO2 and H2 are bifunctional. These catalysts contain both a methanol synthesis catalyst and a dehydrating component, such as mesoporous zeolites with acid centers of weak and medium strength, evenly distributed on the surface. The synthesis of gasoline hydrocarbons (≥ C5) is carried out through the formation of CO or CH3OH and DME as intermediates on multifunctional catalysts, which also contain zeolites. Hydrogenation of CO2 into ethanol can be considered as an alternative to the synthesis of ethanol through the hydration of ethylene. High activation energy of carbon dioxide, harsh synthesis conditions as well as high selectivity for hydrocarbons, in particular methane remains the main problems. Further increase of selectivity and efficiency of carbon dioxide hydrogenation processes involves the use of nanocatalysts taking into account the mechanism of CO2 conversion reactions, development of methods for removing excess water as a by-product from the reaction zone and increasing catalyst stability over time.


2015 ◽  
Vol 37 (4) ◽  
pp. 402-407
Author(s):  
S.V. Zhil’tsova ◽  
◽  
V.M. Mikhal’chuk ◽  
N.G. Leonova ◽  
R.I. Lyga ◽  
...  

2017 ◽  
Vol 58 (8) ◽  
pp. 1543-1552
Author(s):  
N.I. Fainer ◽  
◽  
R.V. Pushkarev ◽  
V.A. Shestakov ◽  
A.K. Gutakovsky ◽  
...  

2020 ◽  
Vol 5 (443) ◽  
pp. 85-91
Author(s):  
Ibrayev M.K., ◽  
◽  
Takibayeva A.T., ◽  
Fazylov S.D., ◽  
Rakhimberlinova Zh.B., ◽  
...  

This article presents studies on the targeted search for new derivatives of azoles, such as benzthiazole, 3,5-dimethylpyrazole, 1,3,4-oxadiazole-2-thione, 1,3,4-thiadiazole. The possibility of combining in one molecule of the azole ring with other cyclic compounds: the alkaloid cytisine, morpholine, furan and some arenes has been studied. To obtain new compounds, the reactions of bromination, acylation, and interaction with isothiocyanates were studied. Optimal synthesis conditions were studied for all reactions. It was found that the reaction of 4-bromo-3,5-dimethylpyrazole with isothiocyanates, in contrast to the previously written derivatives of anilines, takes a longer time and requires heating the reaction mixture. The combination of a pirasol fragment with halide substituents often results in an enhanced therapeutic effect. The synthesized 2-bromine-N-(6-rodanbenzo[d]thiazole-2-yl)acetamide, due to the alkylbromide group, is an important synth in the synthesis of new benzthiazole derivatives. Its derivatives combine in one molecule the rest of rhodanbenzthiazole with alkaloid cytisine and biogenic amine morpholine and are potentially biologically active compounds, since the molecule structure contains several pharmacophoric fragments: benzthiazole and alkaloid (amine) heterocycles, rhodane and urea groups. The mechanism of formation of 1,3,4-oxadiazole-2-tyons from hydrazides under action on them by carbon disulfide was studied and assumed. It was shown that dithiocarbamates in acidic medium decompose with the release of hydrogen sulfide and the formation of highly reactive isothiocyanate group. Then, intra-molecular cyclization occurs, with the formation of end products - 1,3,4-oxadiazole-2-thions. The structures of the synthesized compounds were studied by 1H and 13C NMR spectroscopy. All synthesized substances are potentially biologically active compounds, since they contain several pharmacophore fragments in their structure.


2018 ◽  
Vol 10 (3) ◽  
pp. 03029-1-03029-6
Author(s):  
L. V. Mokhnatska ◽  
◽  
V. O. Kotsyubynsky ◽  
A. B. Hrubiak ◽  
S. V. Fedorchenko ◽  
...  

2017 ◽  
Vol 14 (8) ◽  
Author(s):  
Mohammad Kazem Khoeeniha ◽  
Mehdi Esfandyari-Manesh ◽  
Hossein Behrouz ◽  
Mohsen Amini ◽  
Behrang Shiri Varnamkhasti ◽  
...  

1987 ◽  
Vol 52 (1) ◽  
pp. 93-102 ◽  
Author(s):  
Jaroslav Vinš ◽  
Jan Šubrt ◽  
Vladimír Zapletal ◽  
František Hanousek

A method has been worked out for the reproducible preparation of Green Rust substances involving SO42-, Cl-, Br-, and I- anions. The chemical composition of the substances prepared has been followed in dependence on the synthesis conditions. The powder X-ray and electron diffraction patterns and infrared and Moessbauer spectra have been measured and discussed.


Author(s):  
Jean-Pierre Jolivet

This much-anticipated new edition of Jolivet's work builds on the edition published in 2000. It is entirely updated, restructured and increased in content. The book focuses on the formation by techniques of green chemistry of oxide nanoparticles having a technological interest. Jolivet introduces the most recent concepts and modelings such as dynamics of particle growth, ordered aggregation, ionic and electronic interfacial transfers. A general view of the metal hydroxides, oxy-hydroxides and oxides through the periodic table is given, highlighting the influence of the synthesis conditions on crystalline structure, size and morphology of nanoparticles. The formation of aluminum, iron, titanium, manganese and zirconium oxides are specifically studied. These nanomaterials have a special interest in many technological fields such as ceramic powders, catalysis and photocatalysis, colored pigments, polymers, cosmetics and also in some biological or environmental phenomena.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 666 ◽  
Author(s):  
Nikolay Ivanovich Polushin ◽  
Alexander Ivanovich Laptev ◽  
Boris Vladimirovich Spitsyn ◽  
Alexander Evgenievich Alexenko ◽  
Alexander Mihailovich Polyansky ◽  
...  

Boron-doped diamond is a promising semiconductor material that can be used as a sensor and in power electronics. Currently, researchers have obtained thin boron-doped diamond layers due to low film growth rates (2–10 μm/h), with polycrystalline diamond growth on the front and edge planes of thicker crystals, inhomogeneous properties in the growing crystal’s volume, and the presence of different structural defects. One way to reduce structural imperfection is the specification of optimal synthesis conditions, as well as surface etching, to remove diamond polycrystals. Etching can be carried out using various gas compositions, but this operation is conducted with the interruption of the diamond deposition process; therefore, inhomogeneity in the diamond structure appears. The solution to this problem is etching in the process of diamond deposition. To realize this in the present work, we used triethyl borate as a boron-containing substance in the process of boron-doped diamond chemical vapor deposition. Due to the oxygen atoms in the triethyl borate molecule, it became possible to carry out an experiment on simultaneous boron-doped diamond deposition and growing surface etching without the requirement of process interruption for other operations. As a result of the experiments, we obtain highly boron-doped monocrystalline diamond layers with a thickness of about 8 μm and a boron content of 2.9%. Defects in the form of diamond polycrystals were not detected on the surface and around the periphery of the plate.


2015 ◽  
Vol 670 ◽  
pp. 49-54 ◽  
Author(s):  
Yuriy A. Zaharov ◽  
Valeriy M. Pugachev ◽  
Kseniya A. Datiy ◽  
Anna N. Popova ◽  
Anastasiya S. Valnyukova ◽  
...  

In the paper, the particle morphology is considered and the slices of phase diagrams of nanosystems agreeable to the synthesis conditions are constructed according to the data obtained earlier by authors, as well as new results of the study of nanostructured Fe-Co, Fe-Ni, Co-Ni, Fe-Co-Ni, Fe-Pt, Cu-Ni and Ni-Cd powders. It is found that all considered polymetallic systems have common nature of the particle size spatial organization, i.e., 7-20 nm nanocrystals (for different systems) form highly compact aggregates (40-100 nm) which put together into loose porous agglomerates (up to 200-250 nm) and then into unconsolidated micron size formation of cloud type. It is classified uncovered features of nanostructured polymetallic phase diagrams in comparison with phase diagrams of bulk systems. Magnetic properties of nanosystems are studied.


Sign in / Sign up

Export Citation Format

Share Document