Residual stress relaxation and duty cycle on high cycle fatigue life of micro-arc oxidation coated AA7075-T6 alloy

2020 ◽  
Vol 130 ◽  
pp. 105283 ◽  
Author(s):  
Weibing Dai ◽  
Jin Hao ◽  
Changyou Li ◽  
David He ◽  
Dawei Jia ◽  
...  
2021 ◽  
Vol 9 (4) ◽  
pp. 419
Author(s):  
Jin Gan ◽  
Zi’ang Gao ◽  
Yiwen Wang ◽  
Zhou Wang ◽  
Weiguo Wu

Ship hatch corner is a common structure in a ship and its fatigue problem has always been one of the focuses in ship engineering due to the long–term high–stress concentration state during the ship’s life. For investigating the fatigue life improvement of the ship hatch corner under different shot peening (SP) treatments, a series of fatigue tests, residual stress and surface topography measurements were conducted for SP specimens. Furthermore, the distributions of the surface residual stress are measured with varying numbers of cyclic loads, investigating the residual stress relaxation during cyclic loading. The results show that no matter which SP process parameters are used, the fatigue lives of the shot–peened ship hatch corner specimens are longer than those at unpeened specimens. The relaxation rate of the residual stress mainly depends on the maximum compressive residual stress (σRSmax) and the depth of the maximum compressive residual stress (δmax). The larger the values of σRSmax and δmax, the slower the relaxation rates of the residual stress field. The results imply that the effect of residual stress field and surface roughness should be considered comprehensively to improve the fatigue life of the ship hatch corner with SP treatment. The increase in peening intensity (PI) within a certain range can increase the depth of the compressive residual stress field (CRSF), so the fatigue performance of the ship hatch corner is improved. Once the PI exceeds a certain value, the surface damage caused by the increase in surface roughness will not be offset by the CRSF and the fatigue life cannot be improved optimally. This research provides an approach of fatigue performance enhancement for ship hatch corners in engineering application.


2013 ◽  
Vol 838-841 ◽  
pp. 265-269
Author(s):  
Yi Fei Wang ◽  
Wei Lian Qu ◽  
Er Nian Zhao ◽  
Bai Feng Ji ◽  
Liang Wang

Fatigue failure of welded structure has been highly concerned in structural engineering field. At present, the numerical simulation method has been actively applied on fatigue life prediction of welded structures. In this paper, welding residual stress of a butt welded plate was simulated by thermal elastic-plastic finite element method, and welding residual stress relaxation behavior under overload was analyzed. Then, the fatigue life of the welding plate under cyclic loading was numerically predicted with considering the welding residual stress and welding residual stress relaxation, and the result was compared with that calculated according to current steel structures design code of China. The results show that, considering fatigue reliability, the fatigue life calculated based on design formulas of the steel design code is more conservative, and numerical method for fatigue life prediction of welded structures, considering the welding residual stress and welding residual stress relaxation, is a feasible method.


2006 ◽  
Vol 524-525 ◽  
pp. 57-62 ◽  
Author(s):  
I. Altenberger ◽  
Ivan Nikitin ◽  
P. Juijerm ◽  
Berthold Scholtes

Different classes of metallic materials (aluminum alloys, steels, titanium alloys) were mechanically surface treated by deep rolling and laser shock peening and isothermally fatigued at elevated temperature under stress control. The fatigue tests were interrupted after different numbers of cycles for several stress amplitudes and residual stresses and FWHM-values were measured by X-ray diffraction methods at the surface and as a function of depth. The results summarize the response of the surface treatment induced residual stress profiles to thermomechanical loading conditions in the High Cycle Fatigue (HCF)- as well as in the Low Cycle Fatigue (LCF) regime. The effects of stress amplitude, plastic strain amplitude, temperature and frequency are addressed in detail and discussed. The results indicate that residual stress relaxation during high temperature fatigue can be predicted for sufficiently simplified loading conditions and that thermal and mechanical effects can be separated from each other. A plastic strain based approach appears to be most suitable to describe residual stress relaxation. Frequency effects were found to be not very pronounced in the frequency range investigated.


Author(s):  
Fang Quan ◽  
Zhitong Chen ◽  
Qiantong Li ◽  
Shimin Gao

The nickel-based superalloy GH4169 is widely applied in the aviation industry due to its outstanding mechanical properties. However, many blades of GH4169 are still produced by milling and manual polishing, which is costly and unreliable. In this article, GH4169 superalloy components manufactured with combination processes of milling, grinding, and polishing were comparatively studied involving surface integrity and fatigue performance. Test results indicate that the final polishing is the most dominant process that influences the high-cycle fatigue life of GH4169 components. Samples produced via cubic boron nitride grinding and numerical control polishing with a diamond-rubber wheel exhibit fatigue limits of 150 MPa higher than the milled and manually polished samples. Cubic boron nitride grinding induces a considerable compressive residual stress profile with a magnitude of -930 MPa and a depth of 200 μm. Milling induces a typical “hook” residual stress profile with 318 MPa at the surface. Polishing affects the machined surface by two ways, the removal effect and the squeezing effect. The squeezing effect induces a shallow compressive residual stress with approximately −1000 MPa, therefore improves the surface condition. However, inevitable omissions, scratches, texture disorders, and knock marks in hand-polishing are the main causes of the unstable high-cycle fatigue life of hand-polished components.


Sign in / Sign up

Export Citation Format

Share Document