Reduction of Listeria monocytogenes populations during exposure to a simulated gastric fluid following storage of inoculated frankfurters formulated and treated with preservatives

2005 ◽  
Vol 99 (3) ◽  
pp. 309-319 ◽  
Author(s):  
J.D. Stopforth ◽  
Y. Yoon ◽  
I.M. Barmpalia ◽  
J. Samelis ◽  
P.N. Skandamis ◽  
...  
2004 ◽  
Vol 67 (6) ◽  
pp. 1170-1176 ◽  
Author(s):  
LAURA D. WONDERLING ◽  
DARRELL O. BAYLES

Listeria monocytogenes strain H7762, a frankfurter isolate, was tested to determine whether it was able to survive at 4°C in frankfurter pack fluid (exudate) and to determine whether food exposure affects its acid sensitivity. Cultures were sampled and tested for acid sensitivity by challenge with simulated gastric fluid (SGF). SGF challenges performed immediately after inoculation revealed that between 20 and 26% of the cells survived the full 30 min of SGF challenge regardless of whether the cells were inoculated into brain heart infusion broth (BHI) or exudate. After 2 days of incubation, cells exposed to both exudate and BHI had significantly decreased SGF resistance; however, the cells exposed to exudate were significantly more SGF resistant than cells exposed to BHI (after 15 min of SGF treatment, 33% of the exudate-exposed cells survived and 12% of the BHI-exposed cells survived). L. monocytogenes exposed to exudate had greater SGF resistance at all challenge times compared with BHI-exposed cells from day 2 through day 4. From days 8 to 15, exudate-exposed cells continued to have greater SGF resistance than BHI-exposed cells up to 10 min of SGF challenge but were as sensitive as the BHI-exposed cells at 20 to 30 min of challenge. By day 25, cells exposed to exudate were significantly more sensitive to SGF challenge than BHI-exposed cells. The survivor data generated from SGF challenges were modeled by a nonlinear regression analysis to calculate the underlying distribution of SGF resistance found in the challenged populations. These analyses indicated that L. monocytogenes exposed to exudate at 48C had a broader distribution of resistance to SGF compared with cells exposed to BHI at 4°C. In addition, the mean time of death during SGF treatment was greater after exposure to exudate, indicating that cells exposed to exudate were more resistant to killing by SGF. These data suggest that exposure to frankfurter exudate might render L. monocytogenes more able to survive the stomach environment during the initial stages of infection.


2007 ◽  
Vol 70 (1) ◽  
pp. 65-69 ◽  
Author(s):  
GIOVANNI FORMATO ◽  
IFIGENIA GEORNARAS ◽  
IOANNA M. BARMPALIA ◽  
PANAGIOTIS N. SKANDAMIS ◽  
KEITH E. BELK ◽  
...  

The fate of acid-adapted and nonadapted Listeria monocytogenes inoculated onto bologna slices (formulated with or without antimicrobials) was examined during storage and after exposure to in vitro gastric challenge. Bologna slices formulated with no antimicrobials (control), 3% sodium lactate (SL), or 1.8% SL plus 0.25% sodium diacetate (SD) were inoculated (2 log CFU/cm2) with a 10-strain composite of acid-adapted or nonadapted L. monocytogenes strains. Growth or survival of the two inocula on bologna was evaluated during vacuum-packaged storage (10°C) for up to 36 days. Survival of previously acid-adapted or nonadapted L. monocytogenes on stored bologna exposed to simulated gastric fluid (adjusted to pH 1.0 with HCl) for 20, 40, and 60 min also was determined. As expected, inclusion of antimicrobials in the product formulation inhibited growth of L. monocytogenes during storage of vacuum-packaged bologna compared with growth on control samples. Acid adaptation of L. monocytogenes prior to product inoculation did not affect subsequent survival or growth on bologna or resistance to simulated gastric fluid (P > 0.05). Survival of L. monocytogenes exposed to simulated gastric fluid during storage increased with product age, growth phase of the cells, and possibly age of the cells, particularly for control samples (no antimicrobials), in which the pathogen grew uninhibited to approximately 6 log CFU/cm2 by day 8 of storage. Inhibition of L. monocytogenes growth on product formulated with antimicrobials was associated with only sporadic and small numbers of survivors following exposure of these samples to simulated gastric fluid, especially in samples stored longer. However, cell numbers in these treatment groups before the gastric challenge did not exceed 3.8 log CFU/cm2. Inhibition of growth on product with antimicrobials precluded detection of survivors resistant to the effects of simulated gastric fluid.


2016 ◽  
Vol 82 (23) ◽  
pp. 6846-6858 ◽  
Author(s):  
Evangelia Zilelidou ◽  
Christina-Vasiliki Karmiri ◽  
Georgia Zoumpopoulou ◽  
Eleni Mavrogonatou ◽  
Dimitris Kletsas ◽  
...  

ABSTRACTVariousListeria monocytogenesstrains may contaminate a single food product, potentially resulting in simultaneous exposure of consumers to multiple strains. However, due to bias in strain recovery,L. monocytogenesstrains isolated from foods by selective enrichment (SE) might not always represent those that can better survive the immune system of a patient. We investigated the effect of cocultivation in tryptic soy broth with 0.6% yeast extract (TSB-Y) at 10°C for 8 days on (i) the detection ofL. monocytogenesstrains during SE with the ISO 11290-1:1996/Amd 1:2004 protocol and (ii) thein vitrovirulence of strains toward the Caco-2 human colon epithelial cancer cell line following exposure to simulated gastric fluid (SGF; pH 2.0)-HCl (37°C). We determined whether the strains which were favored by SE would be effective competitors under the conditions of challenges related to gastrointestinal passage of the pathogen. Interstrain competition ofL. monocytogenesin TSB-Y determined the relative population of each strain at the beginning of SE. This in turn impacted the outcome of SE (i.e., favoring survival of competitors with better fitness) and the levels exposed subsequently to SGF. However, strong growth competitors could be outcompeted after SGF exposure and infection of Caco-2 cells by strains outgrown in TSB-Y and underdetected (or even missed) during enrichment. Our data demonstrate a preferential selection of certainL. monocytogenesstrains during enrichments, often not reflecting a selective advantage of strains during infection. These findings highlight a noteworthy scenario associated with the difficulty of matching the source of infection (food) with theL. monocytogenesisolate appearing to be the causative agent during listeriosis outbreak investigations.IMPORTANCEThis report is relevant to understanding the processes involved in selection and prevalence of certainL. monocytogenesstrains in different environments (i.e., foods or sites of humans exposed to the pathogen). It highlights the occurrence of multiple strains in the same food as an important aspect contributing to mismatches between clinical isolates and infection sources during listeriosis outbreak investigations.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Xingjian Bai ◽  
Dongqi Liu ◽  
Luping Xu ◽  
Shivendra Tenguria ◽  
Rishi Drolia ◽  
...  

AbstractEnvironmental cues promote microbial biofilm formation and physiological and genetic heterogeneity. In food production facilities, biofilms produced by pathogens are a major source for food contamination; however, the pathogenesis of biofilm-isolated sessile cells is not well understood. We investigated the pathogenesis of sessile Listeria monocytogenes (Lm) using cell culture and mouse models. Lm sessile cells express reduced levels of the lap, inlA, hly, prfA, and sigB and show reduced adhesion, invasion, translocation, and cytotoxicity in the cell culture model than the planktonic cells. Oral challenge of C57BL/6 mice with food, clinical, or murinized-InlA (InlAm) strains reveals that at 12 and 24 h post-infection (hpi), Lm burdens are lower in tissues of mice infected with sessile cells than those infected with planktonic cells. However, these differences are negligible at 48 hpi. Besides, the expressions of inlA and lap mRNA in sessile Lm from intestinal content are about 6.0- and 280-fold higher than the sessle inoculum, respectively, suggesting sessile Lm can still upregulate virulence genes shortly after ingestion (12 h). Similarly, exposure to simulated gastric fluid (SGF, pH 3) and intestinal fluid (SIF, pH 7) for 13 h shows equal reduction in sessile and planktonic cell counts, but induces LAP and InlA expression and pathogenic phenotypes. Our data show that the virulence of biofilm-isolated Lm is temporarily attenuated and can be upregulated in mice during the early stage (12–24 hpi) but fully restored at a later stage (48 hpi) of infection. Our study further demonstrates that in vitro cell culture assay is unreliable; therefore, an animal model is essential for studying the pathogenesis of biofilm-isolated bacteria.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 449
Author(s):  
Ahmed M. Omer ◽  
Zyta M. Ziora ◽  
Tamer M. Tamer ◽  
Randa E. Khalifa ◽  
Mohamed A. Hassan ◽  
...  

An effective drug nanocarrier was developed on the basis of a quaternized aminated chitosan (Q-AmCs) derivative for the efficient encapsulation and slow release of the curcumin (Cur)-drug. A simple ionic gelation method was conducted to formulate Q-AmCs nanoparticles (NPs), using different ratios of sodium tripolyphosphate (TPP) as an ionic crosslinker. Various characterization tools were employed to investigate the structure, surface morphology, and thermal properties of the formulated nanoparticles. The formulated Q-AmCs NPs displayed a smaller particle size of 162 ± 9.10 nm, and higher surface positive charges, with a maximum potential of +48.3 mV, compared to native aminated chitosan (AmCs) NPs (231 ± 7.14 nm, +32.8 mV). The Cur-drug encapsulation efficiency was greatly improved and reached a maximum value of 94.4 ± 0.91%, compared to 75.0 ± 1.13% for AmCs NPs. Moreover, the in vitro Cur-release profile was investigated under the conditions of simulated gastric fluid [SGF; pH 1.2] and simulated colon fluid [SCF; pH 7.4]. For Q-AmCs NPs, the Cur-release rate was meaningfully decreased, and recorded a cumulative release value of 54.0% at pH 7.4, compared to 73.0% for AmCs NPs. The formulated nanoparticles exhibited acceptable biocompatibility and biodegradability. These findings emphasize that Q-AmCs NPs have an outstanding potential for the delivery and slow release of anticancer drugs.


2019 ◽  
Vol 127 (5) ◽  
pp. 1564-1575 ◽  
Author(s):  
V.S. Castro ◽  
D.K.A. Rosario ◽  
Y.S. Mutz ◽  
A.C.C. Paletta ◽  
E.E.S. Figueiredo ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 723
Author(s):  
He Xia ◽  
Ang Li ◽  
Jia Man ◽  
Jianyong Li ◽  
Jianfeng Li

In this work, we used a co-flow microfluidic device with an injection and a collection tube to generate droplets with different layers due to phase separation. The phase separation system consisted of poly(ethylene glycol) diacrylate 700 (PEGDA 700), PEGDA 250, and sodium alginate aqueous solution. When the mixture droplets formed in the outer phase, PEGDA 700 in the droplets would transfer into the outer aqueous solution, while PEGDA 250 still stayed in the initial droplet, breaking the miscibility equilibrium of the mixture and triggering the phase separation. As the phase separation proceeded, new cores emerged in the droplets, gradually forming the second and third layers. Emulsion droplets with different layers were polymerized under ultraviolet (UV) irradiation at different stages of phase separation to obtain microspheres. Microspheres with different layers showed various release behaviors in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). The release rate decreased with the increase in the number of layers, which showed a potential application in sustained drug release.


Sign in / Sign up

Export Citation Format

Share Document