scholarly journals A statistical analysis of well production rates from UK oil and gas fields – Implications for carbon capture and storage

2013 ◽  
Vol 19 ◽  
pp. 510-518 ◽  
Author(s):  
Simon A. Mathias ◽  
Jon G. Gluyas ◽  
Eric J. Mackay ◽  
Ward H. Goldthorpe
Author(s):  
Xiaozhi Wang ◽  
Booki Kim ◽  
Yanming Zhang ◽  
Ping Liao

Floating production, storage and offloading systems (FPSOs) have been widely used in the development of offshore oil and gas fields because of their many attractive features. These features include a large work area and storage capacity, mobility (if desired), relatively low construction cost and good stability. They are mostly ship shaped, either converted from existing tankers or purpose built. The hull structural scantling design for tankers may be applicable to FPSOs; however, FPSOs have their own unique characteristics. FPSOs are located at specific locations with a dynamic loading that is quite different from that arising from unrestricted ocean service conditions for tankers. It is also noted that the wave conditions in recent FPSO applications may be very complicated when operating in areas such as those offshore West Africa and offshore Brazil where both seas and swells exist and propagate in different directions. In this paper, the unique FPSO operational aspects, especially the load assessment due to on-site environments will be described. The methodology of handling complicated wave conditions in fatigue assessment will be addressed. Special considerations for converted FPSOs, which need to take into account their operational history as a trading tanker and low cycle fatigue due to FPSO operations, will also be introduced. Case studies will be presented and appropriate analysis methodology will be summarized. The methodology has also been adopted by ABS Guide, see ABS [1].


2019 ◽  
Vol 38 (4) ◽  
pp. 733-750
Author(s):  
Sébastien Chailleux

Analyzing the case of France, this article aims to explain how the development of enhanced oil recovery techniques over the last decade contributed to politicizing the subsurface, that is putting underground resources at the center of social unrest and political debates. France faced a decline of its oil and gas activity in the 1990s, followed by a renewal with subsurface activity in the late 2000s using enhanced oil recovery techniques. An industrial demonstrator for carbon capture and storage was developed between 2010 and 2013 , while projects targeting unconventional oil and gas were pushed forward between 2008 and 2011 before eventually being canceled. We analyze how the credibility, legitimacy, and governance of those techniques were developed and how conflicts made the role of the subsurface for energy transition the target of political choices. The level of political and industrial support and social protest played a key role in building project legitimacy, while the types of narratives and their credibility determined the distinct trajectories of hydraulic fracturing and carbon capture and storage in France. The conflicts over enhanced oil recovery techniques are also explained through the critical assessment of the governance framework that tends to exclude civil society stakeholders. We suggest that these conflicts illustrated a new type of politicization of the subsurface by merging geostrategic concerns with social claims about governance, ecological demands about pollution, and linking local preoccupations to global climate change.


2006 ◽  
Vol 46 (1) ◽  
pp. 435
Author(s):  
B. Hooper ◽  
B. Koppe ◽  
L. Murray

The Latrobe Valley in Victoria’s Gippsland Basin is the location of one of Australia’s most important energy resources—extremely thick, shallow brown coal seams constituting total useable reserves of more than 50,000 million tonnes. Brown coal has a higher moisture content than black coal and generates more CO2 emissions per unit of useful energy when combusted. Consequently, while the Latrobe Valley’s power stations provide Australia’s lowest- cost bulk electricity, they are also responsible for over 60 million tonnes of CO2 emissions per year—over half of the Victorian total. In an increasingly carbon constrained world the ongoing development of the Latrobe Valley brown coal resource is likely to require a drastic reduction in the CO2 emissions from new coal use projects—and carbon capture and storage (CCS) has the potential to meet such deep cuts. The offshore Gippsland Basin, the site of major producing oil and gas fields, has the essential geological characteristics to provide a high-volume, low-cost site for CCS. The importance of this potential to assist the continuing use of the nation’s lowest-cost energy source prompted the Australian Government to fund the Latrobe Valley CO2 Storage Assessment (LVCSA).The LVCSA proposal was initiated by Monash Energy (formerly APEL, and now a 100% subsidiary of Anglo American)—the proponent of a major brown coal-to-liquids plant in the Latrobe Valley. Monash Energy’s plans for the 60,000 BBL per day plant include CCS to store about 13 million tonnes of CO2 per year. The LVCSA, undertaken for Monash Energy by the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC), provides a medium to high-level technical and economic characterisation of the volume and cost potential for secure geosequestration of CO2 produced by the use of Latrobe Valley brown coal (Hooper et al, 2005a). The assessment’s scope includes consideration of the interaction between CO2 injection and oil and gas production, and its findings have been publicly released for use by CCS proponents, oil and gas producers and all other interested parties as an executive summary, (Hooper et al, 2005b), a fact sheet (Hooper et al, 2005c) and a presentation (Hooper et al, 2005d)).The LVCSA identifies the key issues and challenges for implementing CCS in the Latrobe Valley and provides a reference framework for the engagement of stakeholders. In effect the LVCSA constitutes a pre-feasibility study for the implementation of geosequestration in support of the continuing development of Victoria’s brown coal resources.The LVCSA findings indicate that the Gippsland Basin has sufficient capacity to safely and securely store large volumes of CO2 and may provide a viable means of substantially reducing greenhouse gas emissions from coal-fired power plants and other projects using brown coal in the Latrobe Valley. The assessment also indicates that CO2 injection could well be designed to avoid any adverse impact on adjacent oil and gas production, so that CO2 injection can begin near fields that have not yet come to the end of their productive lives. However, CCS proposals involving adjacent injection and production will require more detailed risk management strategies and continuing cooperation between prospective injectors and existing producers.


2019 ◽  
Vol 59 (2) ◽  
pp. 565
Author(s):  
Aaron De Fina ◽  
Marc Chable ◽  
Cameron Wills

The CO2CRC Otway Project continues to demonstrate that carbon capture and storage is a viable option for CO2 mitigation. The CO2CRC Otway Project is Australia’s first CO2 demonstration project, with two projects completed, involving geological storage of some 80000 tonnes of CO2 over the past 10 years. The project was initially authorised for a single stage with a finite life, but the growing requirements of the global carbon capture and storage community required further research on carbon capture and storage technologies and behaviour (via Stages 2 and 3), and so the project was extended. CO2CRC has undertaken 360-degree stakeholder engagement processes throughout the project, regularly consulting with regulators, governments, industry, partners, researchers and the community. This has been especially important as the project changed, operating in a niche space between Victorian environment, petroleum and water Acts. This process has allowed CO2CRC to contribute to alignment efforts within regulatory bodies, to enhance regulations to cover project activities, ensuring best practices are documented and observed to the satisfaction of the regulators and wider community. The Otway Basin in south-west Victoria is a region not immune to broader community concerns regarding the oil and gas and other industries. The surrounding area is predominately dairy farming, with locals relying heavily on the aquifers beneath their land. Although such a backdrop suggests potentially high levels of concern and scrutiny, especially when projects necessitate drilling or other invasive activities, the project has maintained strong local stakeholder engagement and support due to ongoing implementation and evaluation of the stakeholder management processes.


2017 ◽  
Vol 57 (2) ◽  
pp. 413
Author(s):  
Christopher Consoli ◽  
Alex Zapantis ◽  
Peter Grubnic ◽  
Lawrence Irlam

In 1972, carbon dioxide (CO2) began to be captured from natural gas processing plants in West Texas and transported via pipeline for enhanced oil recovery (EOR) to oil fields also in Texas. This marked the beginning of carbon capture and storage (CCS) using anthropogenic CO2. Today, there are 22 such large-scale CCS facilities in operation or under construction around the world. These 22 facilities span a wide range of capture technologies and source feedstock as well as a variety of geologic formations and terrains. Seventeen of the facilities capture CO2 primarily for EOR. However, there are also several significant-scale CCS projects using dedicated geological storage options. This paper presents a collation and summary of these projects. Moving forward, if international climate targets and aspirations are to be achieved, CCS will increasingly need to be applied to all high emission industries. In addition to climate change objectives, the fundamentals of energy demand and fossil fuel supply strongly suggests that CCS deployment will need to be rapid and global. The oil and gas sector would be expected to be part of this deployment. Indeed, the oil and gas industry has led the deployment of CCS and this paper explores the future of CCS in this industry.


Sign in / Sign up

Export Citation Format

Share Document