scholarly journals Evaluation of temperature field and heat flux by inverse analysis during steel strip rolling

2012 ◽  
Vol 55 (4) ◽  
pp. 629-641 ◽  
Author(s):  
Daniel Weisz-Patrault ◽  
Alain Ehrlacher ◽  
Nicolas Legrand
2012 ◽  
Vol 452-453 ◽  
pp. 959-963 ◽  
Author(s):  
Daniel Weisz-Patrault ◽  
Alain Ehrlacher ◽  
Nicolas Legrand ◽  
Nathalie Labbe ◽  
Jaroslav Horsky ◽  
...  

2012 ◽  
Vol 452-453 ◽  
pp. 959-963 ◽  
Author(s):  
Daniel Weisz-Patrault ◽  
Alain Ehrlacher ◽  
Nicolas Legrand ◽  
Nathalie Labbe ◽  
Jaroslav Horský ◽  
...  

Knowledge of temperature distribution in the roll is fundamental aspect in cold rolling. An inverse analytical method has been previously developed to determine interfacial heat flux and surface temperature by measuring the temperature with a thermocouple (fully embedded) at only one point inside the roll. On this basis some pilot mill tests have been performed. The temperature sensor, the calibration procedure and rolling tests at different strip rolling conditions (5%, 10%, 15% and 20%) are described. Results show a good agreement with well-known theoretical models. Moreover the CPU times of the method (around 0.05 s by cycle) enable an online control of the rolling process.


2011 ◽  
Vol 211 (9) ◽  
pp. 1500-1509 ◽  
Author(s):  
Daniel Weisz-Patrault ◽  
Alain Ehrlacher ◽  
Nicolas Legrand

2005 ◽  
Author(s):  
Andrew C. Miner ◽  
Uttam Ghoshal

The illumination of a sample when imaged by thermoreflectance thermal microscopy may cause significant heating of the surface. Nonlinearities in the performance of the system being imaged may lead to large measurement induced errors in the observed temperature field. Analytical expressions are presented to estimate the temperature rise and heat flux in a sample. Spatially filtered thermo-reflectance microscopy is introduced as a technique to significantly reduce the incident heat flux without loss of spatial resolution.   This paper was also originally published as part of the Proceedings of the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems.


2012 ◽  
Vol 504-506 ◽  
pp. 1043-1048 ◽  
Author(s):  
Nicolas Legrand ◽  
Nathalie Labbe ◽  
Daniel Weisz-Patrault ◽  
Alain Ehrlacher ◽  
Tomasz Luks ◽  
...  

This paper presents an analysis of roll bite heat transfers during hot steel strip rolling. Two types of temperature sensors (drilled sensor /slot sensor) implemented near roll surface and heat transfer models are used to identify in the roll bite interfacial heat flux, temperature and Heat Transfer Coefficient HTCroll-bite during pilot rolling tests. It is shown that: - the slot type sensor is much more efficient than the drilled type sensor to capture correctly fast roll temperature changes in the bite during hot rolling but life’s duration of the slot sensor is shorter. - average HTCroll-bite, identified with roll sensors temperature signals is within the range 15-26 kW/m2/K: the higher the strip reduction is, the higher the HTCroll-bite is. - scale thickness at strip surface tends to decrease heat transfers from strip to roll in the roll bite. - HTCroll-bite appears not uniform along the roll-strip contact, in contrast to usual assumptions made in existing models - Heat dissipated by friction at roll-strip interface and its partitioning through roll and strip respectively seems over-estimated in the existing thermal roll gap model [1]. Modeling of interfacial friction heat dissipation should be reviewed and verified. The above results show the interest of roll temperature sensors to determine accurately roll bite heat transfers and evaluate more precisely the corresponding roll thermal fatigue degradation.


1985 ◽  
Vol 107 (1) ◽  
pp. 28-32 ◽  
Author(s):  
D. Duffy

The temperature field within a sphere is found when the sphere is heated by a directed heat flux and cooled by blackbody radiation. For small heat fluxes, the analytic solution is obtained by transform methods. For large heat fluxes, the solution is computed numerically.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012171
Author(s):  
V V Cheverda ◽  
T G Gigola ◽  
P M Somwanshi

Abstract The spatiotemporal distribution of the temperature inside a constantan foil during impacting spray is resolved experimentally in the present work. The received infrared image sequence will be used to find the local and average heat transfer coefficient of the foil. In the future, the results obtained will be used to calculate the heat flux in the region of the contact line of each drop.


Sign in / Sign up

Export Citation Format

Share Document