scholarly journals Spatiotemporal distribution of the temperature field inside the thin heated foil during impacting liquid spray

2021 ◽  
Vol 2119 (1) ◽  
pp. 012171
Author(s):  
V V Cheverda ◽  
T G Gigola ◽  
P M Somwanshi

Abstract The spatiotemporal distribution of the temperature inside a constantan foil during impacting spray is resolved experimentally in the present work. The received infrared image sequence will be used to find the local and average heat transfer coefficient of the foil. In the future, the results obtained will be used to calculate the heat flux in the region of the contact line of each drop.

2021 ◽  
Vol 2101 (1) ◽  
pp. 012037
Author(s):  
Junli Guo ◽  
Jin Zou ◽  
Changlin Yang ◽  
Deping Lu ◽  
Lefei Sun

Abstract The calculation of temperature field in the mold is important for the study of solidification process of liquid steel. In order to calculate the accurate temperature field of slab in the mod, the boundary condition of heat transfer in the mold should be determined before the calculation of slab temperature. In this paper, the relationship among the average heat transfer coefficient in the mold, the physical properties of steel, the cast condition and the cooling condition is derived according to the energy conservation equation and the Fourier law of heat conduction. Furthermore, the method for determining the parameters related to the formula of boundary heat flux is introduced. Results indicate that the average heat transfer coefficient in the mold ranges from 450 to 2000 W·(m2oC)−1 for conventional caster with a casting speed ranging from 0.8 and 1.8 m·min-1. The average heat transfer coefficient increases with the increase of casting speed. Besides, the casting speed has an effect on the parameters in the formula of calculating boundary heat flux, which indicates that the casting speed and the cooling condition should be taken into consideration for determining parameters related to the formula of calculating surface heat flux in the mold.


Author(s):  
С.В. Бородкин ◽  
А.В. Иванов ◽  
И.Л. Батаронов ◽  
А.В. Кретинин

На основе уравнений теплопереноса в движущейся среде и соотношений теплопередачи в термоэлектрическом охладителе приведен сравнительный анализ методик расчета поля температуры в теплонапряженном элементе. Рассмотрены методики на основе: 1) теплового баланса, 2) среднего коэффициента теплоотдачи, 3) дифференциального коэффициента теплоотдачи, 4) прямого расчета в рамках метода конечных элементов. Установлено, что первые две методики не дают адекватного распределения поля температур, но могут быть полезны для определения принципиальной возможности заданного охлаждения с использованием термоэлектрических элементов. Последние две методики позволяют корректно рассчитать температурное поле, но для использования третьей методики необходим дифференциальный коэффициент теплоотдачи, который может быть найден из расчета по четвертой методике. Сделан вывод о необходимости комбинированного использования методик в общем случае. Методы теплового баланса и среднего коэффициента теплоотдачи позволяют определить принципиальную возможность использования термоэлектрического охлаждения конкретного теплонапряженного элемента (ТЭ). Реальные параметры системы охлаждения должны определяться в рамках комбинации методов дифференциального коэффициента теплоотдачи и конечных элементов (МКЭ). Первый из них позволяет определить теплонапряженные области и рассчитать параметры системы охлаждения, которые обеспечивают тепловую разгрузку этих областей. Второй метод используется для проведения численных экспериментов по определению коэффициента теплоотдачи реальной конструкции The article presents on the basis of the equations of heat transfer in a moving medium and the relations of heat transfer in a thermoelectric cooler, a comparative analysis of methods for calculating the temperature field in a heat-stressed element. We considered methods based on: 1) heat balance, 2) average heat transfer coefficient, 3) differential heat transfer coefficient, 4) direct calculation using the finite element method. We established that the first two methods do not provide an adequate distribution of the temperature field but can be useful for determining the principal possibility of a given cooling using thermoelectric elements. The last two methods allow us to correctly calculate the temperature field; but to use the third method, we need a differential heat transfer coefficient, which can be found from the calculation using the fourth method. We made a conclusion about the need for combined use of methods in a general case. The methods of thermal balance and average heat transfer coefficient allow us to determine the principal possibility of using thermoelectric cooling of a specific heat-stressed element. The actual parameters of the cooling system should be determined using a combination of the differential heat transfer coefficient and the finite element method. The first of them allows us to determine the heat-stressed areas and calculate the parameters of the cooling system that provide thermal discharge of these areas. The second method is used to perform numerical experiments to determine the heat transfer coefficient of a real structure


2011 ◽  
Vol 133 (6) ◽  
Author(s):  
Avijit Bhunia ◽  
C. L. Chen

The necessity for an efficient thermal management system covering large areas is growing rapidly with the push toward more electric systems. A significant amount of research over the past 2 decades has conclusively proved the suitability of jet, droplet, or spray impingement for high heat flux cooling. However, all these research consider small heat source areas, typically about a few cm2. Can a large array of impingement pattern, covering a much wider area, achieve similar heat flux levels? This article presents liquid microjet array impingement cooling of a heat source that is about two orders of magnitude larger than studied in the previous works. Experiments are carried out with 441 jets of de-ionized water and a dielectric liquid HFE7200, each 200 μm diameter. The jets impinge on a 189 cm2 area surface, in free surface and confined jet configurations. The average heat transfer coefficient values of the present experiment are compared with correlations from the literature. While some correlations show excellent agreement, others deviate significantly. The ensuing discussion suggests that the post-impingement liquid dynamics, particularly the collision between the liquid fronts on the surface created from surrounding jets, is the most important criterion dictating the average heat transfer coefficient. Thus, similar thermal performance can be achieved, irrespective of the length scale, as long as the flow dynamics are similar. These results prove the scalability of the liquid microjet array impingement technique for cooling a few cm2 area to a few hundred cm2 area.


Author(s):  
Klaudia Chmiel-Kurowska ◽  
Grzegorz Dzido ◽  
Andrzej Gierczycki ◽  
Andrzej B. Jarze˛bski

Experimental investigations of convective heat transfer in nanofluid based on the Cu (approx. 0.15% and 0.25% vol.) nanoparticles synthesized in polyol process were conducted at constant heat flux conditions. A 30% increase in average heat transfer coefficient was found against the results obtained for a pure host liquid (ethylene glycol). Even more significant increase was in the entrance region.


1992 ◽  
Vol 114 (2) ◽  
pp. 425-433 ◽  
Author(s):  
P. J. Marto ◽  
C. L. Anderson

Heat transfer measurements were made during nucleate boiling of R-113 from a bundle of 15 electrically heated, smooth copper tubes arranged in an equilateral triangular pitch. The bundle was designed to simulate a portion of a refrigeration system flooded-tube evaporator. The outside diameter of the tubes was 15.9 mm, and the tube pitch was 19.1 mm. Five of the tubes that were oriented in a vertical array on the centerline of the bundle were each instrumented with six wall thermocouples to obtain an average wall temperature and a resultant average heat transfer coefficient. All tests were performed at atmospheric pressure. The majority of the data were obtained with increasing heat flux to study the onset of nucleate boiling and the influence of surface “history” upon boiling heat transfer. Data taken during increasing heat flux showed that incipient boiling was dependent upon the number of tubes in operation. The operation of lower tubes in the bundle decreased the incipient boiling heat flux and wall superheat of the upper tubes, and generally increased the boiling heat transfer coefficients of the upper tubes at low heat fluxes where natural convection effects are important. The boiling data confirmed that the average heat transfer coefficient for a smooth-tube bundle is larger than obtained for a single tube.


Author(s):  
Avijit Bhunia ◽  
C. L. Chen

The necessity for high heat flux cooling over large areas is growing rapidly with the increasing push towards more electric systems. A significant amount of research over the past two decades has conclusively proved the suitability of impingement cooling, such as jet and droplet array, spray, etc. However all these works are focused on a small heat source area, typically about a few cm2. Can a large array of impingement pattern covering a much wider area achieve similar heat flux levels? In pursuit of an answer, this article presents liquid micro-jet array impingement cooling of a heat source that is about two orders of magnitude larger in size compared to the previous works. Experiments are carried out with 441 jets of water and dielectric liquid HFE7200, each 200 μm diameter, impinging on a 189 cm2 area surface, in free surface and confined jet configurations. The measured values of average heat transfer coefficient are compared with correlations from the literature. While some correlations show excellent agreement, others deviate significantly. The ensuing discussion suggests that the post impingement liquid dynamics, particularly the collision between the liquid fronts on the surface created from surrounding jets, is the most important criterion dictating the average heat transfer coefficient. Thus, similar thermal performance can be achieved irrespective of the length scale, as long as the flow dynamics are similar. These results decisively prove the scalability of the liquid micro-jet array impingement technique for cooling a few cm2 area to 100s of cm2 area.


1994 ◽  
Vol 116 (1) ◽  
pp. 49-54 ◽  
Author(s):  
R. A. Wirtz ◽  
Ashok Mathur

Measurements of the distribution of convective heat transfer over the five exposed faces of a low profile electronic package are described. The package, of square planform and length-to-height ratio, L/a = 6, is part of a regular array of such elements attached to one wall of a low aspect ratio channel. The coolant is air, and experiments are described for the Reynolds number range, 3000<Re<7000. The average heat transfer coefficient for the top face is found to be nearly equal to the overall average heat transfer coefficient for the element. The average heat transfer coefficient for the upstream face and two side faces are higher than the overall average by approximately 30–40 percent and 20–30 percent, respectively while that for the downstream face is 20–30 percent less than the overall average. Furthermore, the distribution in local heat transfer coefficient over the five surfaces of the element is approximately independent of variations in Reynolds number.


Author(s):  
David J. Geb ◽  
Ivan Catton

Non-intrusive measurements of the internal average heat transfer coefficient [1] in a randomly packed bed of spherical particles are made. It is desired to establish accurate results for this simple geometry so that the method used can then be extended to determine the heat transfer characteristics in any porous medium, such as a compact heat exchanger. Under steady, one-dimensional flow the spherical particles are subjected to a step change in volumetric heat generation rate via induction heating. The fluid temperature response is measured. The average heat transfer coefficient is determined by comparing the results of a numerical simulation based on volume averaging theory with the experimental results. More specifically, the average heat transfer coefficient is adjusted within the computational procedure until the predicted values of the fluid outlet temperature match the experimental values. The only information needed is the basic material properties, the flow rate, and the experimental data. The computational procedure alleviates the need for solid and fluid phase temperature measurements, which are difficult to make and can disturb the solid-fluid interaction. Moreover, a simple analysis allows us to proceed without knowledge of the heat generation rate, which is difficult to determine due to challenges associated with calibrating an inductively-coupled, sample specific, heat generation system. The average heat transfer coefficient was determined, and expressed in terms of the Nusselt number, over a Reynolds number range of 20–600. The results compared favorably to the work of Whitaker [2] and Kays and London [3]. The success of this method, in determining the average heat transfer coefficient in a randomly packed bed of spheres, suggests that it can be used to determine the average heat transfer coefficient in other porous media.


Sign in / Sign up

Export Citation Format

Share Document