Computer simulation of momentum and heat transfer across an expanded trapezoidal bluff body

Author(s):  
Amit Dhiman ◽  
Ritwik Ghosh
2014 ◽  
Vol 44 (4) ◽  
pp. 324-346 ◽  
Author(s):  
Amit Dhiman ◽  
Shipra Verma ◽  
Ritwik Ghosh

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1077
Author(s):  
Muhammad Tamoor ◽  
Muhammad Kamran ◽  
Sadique Rehman ◽  
Aamir Farooq ◽  
Rewayat Khan ◽  
...  

In this study, a numerical approach was adopted in order to explore the analysis of magneto fluid in the presence of thermal radiation combined with mixed convective and slip conditions. Using the similarity transformation, the axisymmetric three-dimensional boundary layer equations were reduced to a self-similar form. The shooting technique, combined with the Range–Kutta–Fehlberg method, was used to solve the resulting coupled nonlinear momentum and heat transfer equations numerically. When physically interpreting the data, some important observations were made. The novelty of the present study lies in finding help to control the rate of heat transfer and fluid velocity in any industrial manufacturing processes (such as the cooling of metallic plates). The numerical results revealed that the Nusselt number decrease for larger Prandtl number, curvature, and convective parameters. At the same time, the skin friction coefficient was enhanced with an increase in both slip velocity and convective parameter. The effect of emerging physical parameters on velocity and temperature profiles for a nonlinear stretching cylinder has been thoroughly studied and analyzed using plotted graphs and tables.


2002 ◽  
Vol 29 (2) ◽  
pp. 2847-2854 ◽  
Author(s):  
Jiro Kasahara ◽  
Kouki Takazawa ◽  
Takakage Arai ◽  
Yu Tanahashi ◽  
Shingo Chiba ◽  
...  

Author(s):  
A. M. Al-Jumaily

Facial masks are the main interface between patients and breathing supportive devices. Condensation in these masks causes serious breath disturbance which could be life threatening. Based on temperature-driven mass and heat transfer formulations, a computer simulation fluid dynamic model is developed to compute the condensation rate and locations of a typical breathing facial mask. Condensation measurements are taken to validate the model. The effects of mask geometry and shape on condensation are elaborated on.


Sign in / Sign up

Export Citation Format

Share Document