scholarly journals Numerical simulation of liquid film formation and its heat transfer through vapor bubble expansion in a microchannel

2019 ◽  
Vol 136 ◽  
pp. 1241-1249 ◽  
Author(s):  
Junnosuke Okajima ◽  
Peter Stephan
Author(s):  
Yi-Hsuan Huang ◽  
Chiao-Hsin Chen ◽  
Yao-Hsien Liu

Heat transfer of air/water mist flow in a single-side heated vertical duct was experimentally investigated. The mist flow was produced by introducing fine dispersed water droplets into the air stream, and the water–air mass flow ratios were up to 15%. The Reynolds numbers of the air flow were 7900, 16,000, and 24,000. The rib spacing-to-height ratios were 10 and 20 in the current study. Mist flow cooling achieved higher heat transfer rates mainly because of the droplet deposition and liquid film formation on the heated surface. The heat transfer enhancement on the smooth surface by the mist flow was 4–6 times as high as the air flow. On the ribbed surface, a smaller rib spacing of 10 was preferred for air cooling, since the heat transfer enhancement by the flow reattachment was better utilized. However, the rib-induced secondary flow blew away the liquid films on the surface, and the heat transfer enhancement was degraded near the reattachment region for the mist cooling. A larger rib spacing-to-height ratio of 20 thus achieved higher heat transfer because of the liquid film formation beyond the reattachment region. The heat transfer enhancement on the ribbed surface using mist flow was 2.5–3.5 times as high as the air flow. The friction factor of the mist flow was two times as high as the air flow in the ribbed duct.


Author(s):  
Mohammad Reza Bandari ◽  
Yaghoub Behjat ◽  
Shahrokh Shahhosseini

In this work, computational fluid dynamics (CFD) has been employed to compute local convection heat transfer coefficient (h) that is the key parameter in calculation of heat transfer rate between the particle and fluids in packed bed reactors. In addition, the relation between Reynolds number and Nusselt number for spherical and trilobe catalyst particles have been investigated. Moreover, the parameters of Ranz-Marshall (R-M) correlation have been estimated in order to use it for trilobe catalyst particle. The heat transfer coefficients of the spherical and trilobe particles were compared and the effect of particle shape and configuration on heat transfer rate has been investigated. Eulerian-Eulerian approach was employed in order to investigate gas-liquid hydrodynamic especially liquid film formation around trilobe particles. The effects of liquid film around a trilobe particle and liquid volume fraction on heat transfer coefficient have also been studied. The CFD simulation results indicate that increasing inlet liquid volume fraction raises the liquid film thickness around the particles leading to reduction of heat transfer coefficient. In addition, the results revealed that flow field and temperature profiles around the particles became more complicated as a result of liquid film formation and gas-liquid interactions.


Author(s):  
R. Panneer Selvam ◽  
Sandya Bhaskara ◽  
Juan C. Balda ◽  
Fred Barlow ◽  
Aicha Elshabini

Spray cooling is a high flux heat removal technique considered for systems dissipating high power within small areas such as advanced lasers. Recently Selvam and Ponnappan (2004 & 2005) identified the importance of modeling heat transfer in a thin liquid film on a hot surface at the micro level and illustrated how this micro level modeling could help to improve the macro level spray cooling. The goal of this research is to advance the theoretical understanding of spray cooling to enable efficient system level hardware designs. Two-phase flow modeling is done using the level set method to identify the interface of vapor and liquid. The modifications made to the incompressible Navier-Stokes equations to consider surface tension and phase change are presented. The equations are solved using the finite difference method. The effect of liquid droplet impact on a 40 μm thick liquid film containing vapor bubble and the consequent heat removal is explained with a sequence of temperature vs. time contours. From that, the importance of fast transient conduction in the liquid film leading to high heat flux in a short time is illustrated. The optimum positioning of the droplet with respect to the vapor bubble for effective heat removal is also systematically investigated. This information is expected to help in proper positioning of the droplet in three-dimensional modeling.


Sign in / Sign up

Export Citation Format

Share Document