Predicting phonon scattering and tunable thermal conductivity of 3D pillared graphene and boron nitride heterostructure

Author(s):  
Sina Karimzadeh ◽  
Babak Safaei ◽  
Tien-Chien Jen
2020 ◽  
Vol 4 (3) ◽  
pp. 116
Author(s):  
Maryam Khalaj ◽  
Sanaz Zarabi Golkhatmi ◽  
Sayed Ali Ahmad Alem ◽  
Kahila Baghchesaraee ◽  
Mahdi Hasanzadeh Azar ◽  
...  

Ever-increasing significance of composite materials with high thermal conductivity, low thermal expansion coefficient and high optical bandgap over the last decade, have proved their indispensable roles in a wide range of applications. Hexagonal boron nitride (h-BN), a layered material having a high thermal conductivity along the planes and the band gap of 5.9 eV, has always been a promising candidate to provide superior heat transfer with minimal phonon scattering through the system. Hence, extensive researches have been devoted to improving the thermal conductivity of different matrices by using h-BN fillers. Apart from that, lubrication property of h-BN has also been extensively researched, demonstrating the effectivity of this layered structure in reduction of friction coefficient, increasing wear resistance and cost-effectivity of the process. Herein, an in-depth discussion of thermal and tribological properties of the reinforced composite by h-BN will be provided, focusing on the recent progress and future trends.


2020 ◽  
Vol 10 (5) ◽  
pp. 602-609
Author(s):  
Adil H. Awad

Introduction: A new approach for expressing the lattice thermal conductivity of diatomic nanoscale materials is developed. Methods: The lattice thermal conductivity of two samples of GaAs nanobeam at 4-100K is calculated on the basis of monatomic dispersion relation. Phonons are scattered by nanobeam boundaries, point defects and other phonons via normal and Umklapp processes. Methods: A comparative study of the results of the present analysis and those obtained using Callaway formula is performed. We clearly demonstrate the importance of the utilised scattering mechanisms in lattice thermal conductivity by addressing the separate role of the phonon scattering relaxation rate. The formulas derived from the correction term are also presented, and their difference from Callaway model is evident. Furthermore their percentage contribution is sufficiently small to be neglected in calculating lattice thermal conductivity. Conclusion: Our model is successfully used to correlate the predicted lattice thermal conductivity with that of the experimental observation.


2021 ◽  
Vol 4 (2) ◽  
pp. 2136-2142
Author(s):  
Xiao Hou ◽  
Zhenbang Zhang ◽  
Xianzhe Wei ◽  
Yue Qin ◽  
Guichen Song ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1564
Author(s):  
Jin Hee Kim ◽  
Song Yi Back ◽  
Jae Hyun Yun ◽  
Ho Seong Lee ◽  
Jong-Soo Rhyee

We investigated the anisotropic thermoelectric properties of the Bi2Te2.85Se0.15Ix (x = 0.0, 0.1, 0.3, 0.5 mol.%) compounds, synthesized by ball-milling and hot-press sintering. The electrical conductivities of the Bi2Te2.85Se0.15Ix were significantly improved by the increase of carrier concentration. The dominant electronic scattering mechanism was changed from the mixed (T ≤ 400 K) and ionization scattering (T ≥ 420 K) for pristine compound (x = 0.0) to the acoustic phonon scattering by the iodine doping. The Hall mobility was also enhanced with the increasing carrier concentration. The enhancement of Hall mobility was caused by the increase of the mean free path of the carrier from 10.8 to 17.7 nm by iodine doping, which was attributed to the reduction of point defects without the meaningful change of bandgap energy. From the electron diffraction patterns, a lattice distortion was observed in the iodine doped compounds. The modulation vector due to lattice distortion increased with increasing iodine concentration, indicating the shorter range lattice distortion in real space for the higher iodine concentration. The bipolar thermal conductivity was suppressed, and the effective masses were increased by iodine doping. It suggests that the iodine doping minimizes the ionization scattering giving rise to the suppression of the bipolar diffusion effect, due to the prohibition of the BiTe1 antisite defect, and induces the lattice distortion which decreases lattice thermal conductivity, resulting in the enhancement of thermoelectric performance.


RSC Advances ◽  
2021 ◽  
Vol 11 (25) ◽  
pp. 15486-15496
Author(s):  
Enamul Haque

The layered structure, and presence of heavier elements Rb/Cs and Sb induce high anharmonicity, low Debye temperature, intense phonon scattering, and hence, low lattice thermal conductivity.


2019 ◽  
Vol 34 (02) ◽  
pp. 2050019 ◽  
Author(s):  
Y. Zhang ◽  
M. M. Fan ◽  
C. C. Ruan ◽  
Y. W. Zhang ◽  
X.-J. Li ◽  
...  

[Formula: see text] ceramic samples have a structure similar to phonon glass electronic crystals, and their thermoelectric properties can be effectively adjusted through repeated grinding and sintering. The results show that multi-sintering can make their grain refined and increase their grain boundary, which will effectively increase density and phonon scattering. Finally, multi-sintering can reduce the resistivity and thermal conductivity, thus obviously improve thermoelectric figure of merit [Formula: see text] of [Formula: see text]. The optimum [Formula: see text] value of 0.26 is achieved at 923 K by the third sintered sample.


Sign in / Sign up

Export Citation Format

Share Document