Simulation of transient heat and mass transfer during hydrogen sorption in cylindrical metal hydride beds

2007 ◽  
Vol 32 (12) ◽  
pp. 1969-1981 ◽  
Author(s):  
Arvind Kumar Phate ◽  
M. Prakash Maiya ◽  
S. Srinivasa Murthy
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mapula Lucey Moropeng ◽  
Andrei Kolesnikov ◽  
Mykhaylo Lototskyy ◽  
Avhafunani Mavhungu

AbstractThis paper presents the investigation of a two dimensional coupled model of heat and mass transfer in a mixture of AB2 – AB5 metal hydride (MH) systems of a cylindrical configuration during hydrogen sorption using COMSOL 5.3a commercial software. The parametric study on the sorption process has been studied with variation of heat transfer coefficient (HTC), and activation energy (AE) to understand the effects they have on the reaction kinetics of the sorption process. The simulation results demonstrate the importance of mutual dependence between the temperature propagation in the body of metal hydride, the absorbed concentration of the hydrogen gas, and the gas pressure for the absorption of hydrogen gas in metal hydrides. The decrease in the activation energy is found to have significant effect on the dynamic performances of hydrogen absorption in the MH reactors with an increased amount of hydrogen conversion, whilst the variation of heat transfer coefficient displayed insignificant change in hydrogen conversion. The simulated results show good agreement with the experimental results obtained from HYSA Systems and were implemented for use in the STILL RX60-30L electric forklift fuel cell applications designed by HYSA Systems in the University of the Western Cape.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012122
Author(s):  
D O Dunikov ◽  
V I Borzenko ◽  
D V Blinov ◽  
A N Kazakov ◽  
I A Romanov ◽  
...  

Abstract Heat transfer in porous metal hydride (MH) beds determines efficiency of MH devices. We present a COMSOL Multiphysics numerical model and experimental investigation of heat and mass transfer in a MH reactor filled with 4.69 kg of AB5 type alloy (Mm0.8La0.2Ni4.1Fe0.8Al0.1). To achieve an agreement between the model and experiments it is necessary to include a flow control device (inlet valve or flow regulator) into the model. We propose a simplified and easy-to-calculate boundary condition based on a porous domain with variable permeability at reactor inlet. The permeability of the domain is connected with hydrogen mass flow by a PID controller. Thus, boundary conditions for the inlet pressure and mass flow are coupled and heat transfer inside the reactor could be calculated without additional assumptions applied to heat and mass transfer in the MH bed.


2004 ◽  
Vol 150 (1) ◽  
pp. 169-180 ◽  
Author(s):  
Abdulkadir Dogan ◽  
Yuksel Kaplan ◽  
T.Nejat Veziroglu

Sign in / Sign up

Export Citation Format

Share Document