Double-Loop Control with Hierarchical Sliding Mode and Proportional Integral Loop for 2D Ridable Ballbot

2019 ◽  
Vol 20 (9) ◽  
pp. 1519-1532 ◽  
Author(s):  
Dinh Ba Pham ◽  
Jaejun Kim ◽  
Soon-Geul Lee ◽  
Kwan-Woong Gwak
Author(s):  
Jiaji Zhang ◽  
Xuesong Mei ◽  
Dongsheng Zhang ◽  
Yun Zhang ◽  
Jian Sun

This paper presents the implementation of a three degree-of-freedom magnetic levitation system. First the dynamic model of the magnetic levitation is developed. Then based on the nonlinear model, a robust nonlinear double-loop control algorithm is applied to stabilize the system. The double-loop control architecture consists of two components: 1) terminal sliding mode control (TSMC) is employed in the outer loop to stabilize the rigid dynamic model while maintains robustness.2) Auto disturbance rejection control (ADRC) is applied in the inner loop as a current loop controller to track current command. Finally, experimental results are presented to illustrate the performance of the system dynamic response and current response in each coil. The experiment results show that the terminal sliding mode algorithm combined with auto disturbance rejection control algorithm is effective in the nonlinear MIMO magnetic levitation system.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110087
Author(s):  
Peng Gao ◽  
Guangming Zhang

This study proposes a novel hierarchical nonlinear proportional-integral fast terminal sliding mode (HNLPIFTSM) control for permanent magnet synchronous motor (PMSM) speed regulation system. A new type of sliding surface called HNLPIFTSM surface, which combines the benefits of a nonlinear proportional-integral (PI) sliding mode surface and a fast terminal sliding mode (FTSM) surface, is proposed to enhance the robustness and improved the dynamic response, whilst preserving the great property of the conventional hierarchical fast terminal sliding mode (HFTSM) control strategy. The proposed HNLPIFTSM surface uses the novel nonlinear PI sliding mode surface as its inner loop and uses the FTSM surface as its outer loop. Meanwhile, an extended state observer (ESO) is used to estimate the uncertain terms of the PMSM speed regulation system. Furthermore, the stability of the closed-loop control system under the ESO and the HNLPIFTSM control strategy is proved by the Lyapunov stability theorem. Finally, the simulations and experimental demonstrations verify the effectiveness and superiorities of our proposed HNLPIFTSM control strategy over the conventional HFTSM control strategy.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1832
Author(s):  
Jinfeng Liu ◽  
Xin Qu ◽  
Herbert Ho-Ching Iu

Low-voltage and high-current direct current (DC) power supplies are essential for aerospace and shipping. However, its robustness and dynamic response need to be optimized further on some special occasions. In this paper, a novel rectification system platform is built with the low-voltage and high-current permanent magnet synchronous generator (PMSG), in which the DC voltage double closed-loop control system is constructed with the backstepping control method and the sliding mode variable structure (SMVS). In the active component control structure of this system, reasonable virtual control variables are set to obtain the overall structural control variable which satisfied the stability requirements of Lyapunov stability theory. Thus, the fast-tracking and the global adjustment of the system are realized and the robustness is improved. Since the reactive component control structure is simple and no subsystem has to be constructed, the SMVS is used to stabilize the system power factor. By building a simulation model and experimental platform of the 5 V/300 A rectification module based on the PMSG, it is verified that the power factor of the system can reach about 98.5%. When the load mutation occurs, the DC output achieves stability again within 0.02 s, and the system fluctuation rate does not exceed 2%.


2021 ◽  
Vol 11 (13) ◽  
pp. 5914
Author(s):  
Daniel Reyes-Uquillas ◽  
Tesheng Hsiao

In this article, we aim to achieve manual guidance of a robot manipulator to perform tasks that require strict path following and would benefit from collaboration with a human to guide the motion. The robot can be used as a tool to increase the accuracy of a human operator while remaining compliant with the human instructions. We propose a dual-loop control structure where the outer admittance control loop allows the robot to be compliant along a path considering the projection of the external force to the tangential-normal-binormal (TNB) frame associated with the path. The inner motion control loop is designed based on a modified sliding mode control (SMC) law. We evaluate the system behavior to forces applied from different directions to the end-effector of a 6-DOF industrial robot in a linear motion test. Next, a second test using a 3D path as a tracking task is conducted, where we specify three interaction types: free motion (FM), force-applied motion (FAM), and combined motion with virtual forces (CVF). Results show that the difference of root mean square error (RMSE) among the cases is less than 0.1 mm, which proves the feasibility of applying this method for various path-tracking applications in compliant human–robot collaboration.


2018 ◽  
Vol 90 (8) ◽  
pp. 1168-1179 ◽  
Author(s):  
Hongshi Lu ◽  
Li Aijun ◽  
Wang Changqing ◽  
Zabolotnov Michaelovitch Yuriy

Purpose This paper aims to present the impact analysis of payload rendezvous with tethered satellite system and the design of an adaptive sliding mode controller which can deal with mass parameter uncertainty of targeted payload, so that the proposed cislunar transportation scheme with spinning tether system could be extended to a wider and more practical range. Design/methodology/approach In this work, dynamical model is first derived based on Langrangian equations to describe the motion of a spinning tether system in an arbitrary Keplerian orbit, which takes the mass of spacecraft, tether and payload into account. Orbital design and optimal open-loop control for the payload tossed by the spinning tether system are then presented. The real payload rendezvous impact around docking point is also analyzed. Based on reference acceleration trajectory given by optimal theories, a sliding mode controller with saturation functions is designed in the close-loop control of payload tossing stage under initial disturbance caused by actual rendezvous error. To alleviate the influence of inaccurate/unknown payload mass parameters, the adaptive law is designed and integrated into sliding mode controller. Finally, the performance of the proposed controller is evaluated using simulations. Simulation results validate that proposed controller is found effective in driving the spinning tether system to carry payload into desired cislunar transfer orbit and in dealing with payload mass parameter uncertainty in a relatively large range. Findings The results show that unideal rendezvous manoeuvres have significant impact on in-plane motion of spinning tether system, and the proposed adaptive sliding mode controller with saturation functions not only guarantees the stability but also provides good performance and robustness against the parameter and unstructured uncertainties. Originality/value This work addresses the analysis of actual impact on spinning tether system motion when payload is docking with system within tolerated docking window, rather than at the particular ideal docking point, and the robust tracking control of deep-space payload tossing missions with the spinning tether system using the adaptive sliding mode controller dealing with parameter uncertainties. This combination has not been proposed before for tracking control of multivariable spinning tether systems.


Sign in / Sign up

Export Citation Format

Share Document