scholarly journals Evolution and genetic diversity of SARSCoV-2 in Africa using whole genome sequences

Author(s):  
Babatunde Olarenwaju Motayo ◽  
Olukunle Oluwapamilerin Oluwasemowo ◽  
Babatunde Adebiyi Olusola ◽  
Paul Akiniyi Akinduti ◽  
Olamide T Arege ◽  
...  
2010 ◽  
Vol 84 (12) ◽  
pp. 6229-6234 ◽  
Author(s):  
Seweryn Bialasiewicz ◽  
Rebecca Rockett ◽  
David W. Whiley ◽  
Yacine Abed ◽  
Tobias Allander ◽  
...  

ABSTRACT Exploration of the genetic diversity of WU polyomavirus (WUV) has been limited in terms of the specimen numbers and particularly the sizes of the genomic fragments analyzed. Using whole-genome sequencing of 48 WUV strains collected in four continents over a 5-year period and 16 publicly available whole-genome sequences, we identified three main WUV clades and five subtypes, provisionally termed Ia, Ib, Ic, II, IIIa, and IIIb. Overall nucleotide variation was low (0 to 1.2%). The discriminatory power of the previous VP2 fragment typing method was found to be limited, and a new, larger genotyping region within the VP2/1 interface was proposed.


2018 ◽  
Vol 92 (12) ◽  
pp. e00017-18 ◽  
Author(s):  
Yusuke Hirose ◽  
Mamiko Onuki ◽  
Yuri Tenjimbayashi ◽  
Seiichiro Mori ◽  
Yoshiyuki Ishii ◽  
...  

ABSTRACTPersistent infection with oncogenic human papillomaviruses (HPVs) causes cervical cancer, accompanied by the accumulation of somatic mutations into the host genome. There are concomitant genetic changes in the HPV genome during viral infection; however, their relevance to cervical carcinogenesis is poorly understood. Here, we explored within-host genetic diversity of HPV by performing deep-sequencing analyses of viral whole-genome sequences in clinical specimens. The whole genomes of HPV types 16, 52, and 58 were amplified by type-specific PCR from total cellular DNA of cervical exfoliated cells collected from patients with cervical intraepithelial neoplasia (CIN) and invasive cervical cancer (ICC) and were deep sequenced. After constructing a reference viral genome sequence for each specimen, nucleotide positions showing changes with >0.5% frequencies compared to the reference sequence were determined for individual samples. In total, 1,052 positions of nucleotide variations were detected in HPV genomes from 151 samples (CIN1,n= 56; CIN2/3,n= 68; ICC,n= 27), with various numbers per sample. Overall, C-to-T and C-to-A substitutions were the dominant changes observed across all histological grades. While C-to-T transitions were predominantly detected in CIN1, their prevalence was decreased in CIN2/3 and fell below that of C-to-A transversions in ICC. Analysis of the trinucleotide context encompassing substituted bases revealed that TpCpN, a preferred target sequence for cellular APOBEC cytosine deaminases, was a primary site for C-to-T substitutions in the HPV genome. These results strongly imply that the APOBEC proteins are drivers of HPV genome mutation, particularly in CIN1 lesions.IMPORTANCEHPVs exhibit surprisingly high levels of genetic diversity, including a large repertoire of minor genomic variants in each viral genotype. Here, by conducting deep-sequencing analyses, we show for the first time a comprehensive snapshot of the within-host genetic diversity of high-risk HPVs during cervical carcinogenesis. Quasispecies harboring minor nucleotide variations in viral whole-genome sequences were extensively observed across different grades of CIN and cervical cancer. Among the within-host variations, C-to-T transitions, a characteristic change mediated by cellular APOBEC cytosine deaminases, were predominantly detected throughout the whole viral genome, most strikingly in low-grade CIN lesions. The results strongly suggest that within-host variations of the HPV genome are primarily generated through the interaction with host cell DNA-editing enzymes and that such within-host variability is an evolutionary source of the genetic diversity of HPVs.


2020 ◽  
Author(s):  
Babatunde Olarenwaju Motayo ◽  
Olukunle Oluwapamilerin Oluwasemowo ◽  
Paul Akiniyi Akinduti ◽  
Babatunde Adebiyi Olusola ◽  
Olumide T Aerege ◽  
...  

ABSTRACTThe ongoing SARSCoV-2 pandemic was introduced into Africa on 14th February 2020 and has rapidly spread across the continent causing severe public health crisis and mortality. We investigated the genetic diversity and evolution of this virus during the early outbreak months using whole genome sequences. We performed; recombination analysis against closely related CoV, Bayesian time scaled phylogeny and investigated spike protein amino acid mutations. Results from our analysis showed recombination signals between the AfrSARSCoV-2 sequences and reference sequences within the N and S genes. The evolutionary rate of the AfrSARSCoV-2 was 4.133 × 10−4 high posterior density HPD (4.132 × 10−4 to 4.134 × 10−4) substitutions/site/year. The time to most recent common ancestor TMRCA of the African strains was December 7th 2019. The AfrSARCoV-2 sequences diversified into two lineages A and B with B being more diverse with multiple sub-lineages confirmed by both maximum clade credibility MCC tree and PANGOLIN software. There was a high prevalence of the D614-G spike protein amino acid mutation (82.61%) among the African strains. Our study has revealed a rapidly diversifying viral population with the G614 spike protein variant dominating, we advocate for up scaling NGS sequencing platforms across Africa to enhance surveillance and aid control effort of SARSCoV-2 in Africa.


2020 ◽  
Vol 9 (45) ◽  
Author(s):  
Jing Wang ◽  
Xifeng Yang ◽  
Hongyuan Zheng ◽  
Li Tian ◽  
Qi Shi ◽  
...  

ABSTRACT To explore the genetic diversity of Yersinia pestis strains in Erenhot, China, and their relationship with Mongolian strains, we collected and sequenced three Y. pestis strains from Erenhot, China, in 2018. Here, we report the draft genome sequences of three Y. pestis bv. Medievalis strains belonging to the 2.MED phylogroup that were circulating in Meriones unguiculatus populations.


Author(s):  
Léa Girard ◽  
Cédric Lood ◽  
Monica Höfte ◽  
Peter Vandamme ◽  
Hassan Rokni-Zadeh ◽  
...  

The genus Pseudomonas hosts an extensive genetic diversity and is one of the largest genera among Gram-negative bacteria. Type strains of Pseudomonas are well-known to represent only a small fraction of this diversity and the number of available Pseudomonas genome sequences is increasing rapidly. Consequently, new Pseudomonas species are regularly reported and the number of species within the genus is in constant evolution. In this study, whole genome se-quencing enabled us to define 43 new Pseudomonas species and to provide an update of the Pseu-domonas evolutionary and taxonomic relationships. Phylogenies based on the rpoD gene and whole genome sequences, including 316 and 313 type strains of Pseudomonas, respectively, re-vealed sixteen groups of Pseudomonas and justified the partitioning of the P. putida group into fifteen subgroups. Pairwise average nucleotide identities were calculated between type strains and a selection of 60 genomes of non-type strains of Pseudomonas. Forty-one strains were incor-rectly assigned at the species level and among those, 19 strains were shown to represent an addi-tional 13 new Pseudomonas species that remain to be formally classified. This work pinpoints the importance of correct taxonomic assignment and phylogenetic classification in order to perform integrative studies linking genetic diversity, lifestyle and metabolic potential of Pseudomonas spp.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ning Song ◽  
Guang-Lin Cui ◽  
Qing-Lei Zeng

Even though the COVID-19 epidemic in China has been successfully put under control within a few months, it is still very important to infer the origin time and genetic diversity from the perspective of the whole genome sequence of its agent, SARS-CoV-2. Yet, the sequence of the entire virus genome from China in the current public database is very unevenly distributed with reference to time and place of collection. In particular, only one sequence was obtained in Henan province, adjacent to China's worst-case province, Hubei Province. Herein, we used high-throughput sequencing techniques to get 19 whole-genome sequences of SARS-CoV-2 from 18 severe patients admitted to the First Affiliated Hospital of Zhengzhou University, a provincial designated hospital for the treatment of severe COVID-19 cases in Henan province. The demographic, baseline, and clinical characteristics of these patients were described. To investigate the molecular epidemiology of SARS-CoV-2 of the current COVID-19 outbreak in China, 729 genome sequences (including 19 sequences from this study) sampled from Mainland China were analyzed with state-of-the-art comprehensive methods, including likelihood-mapping, split network, ML phylogenetic, and Bayesian time-scaled phylogenetic analyses. We estimated that the evolutionary rate and the time to the most recent common ancestor (TMRCA) of SARS-CoV-2 from Mainland China were 9.25 × 10−4 substitutions per site per year (95% BCI: 6.75 × 10−4 to 1.28 × 10−3) and October 1, 2019 (95% BCI: August 22, 2019 to November 6, 2019), respectively. Our results contribute to studying the molecular epidemiology and genetic diversity of SARS-CoV-2 over time in Mainland China.


2021 ◽  
Vol 9 (8) ◽  
pp. 1766
Author(s):  
Léa Girard ◽  
Cédric Lood ◽  
Monica Höfte ◽  
Peter Vandamme ◽  
Hassan Rokni-Zadeh ◽  
...  

The genus Pseudomonas hosts an extensive genetic diversity and is one of the largest genera among Gram-negative bacteria. Type strains of Pseudomonas are well known to represent only a small fraction of this diversity and the number of available Pseudomonas genome sequences is increasing rapidly. Consequently, new Pseudomonas species are regularly reported and the number of species within the genus is constantly evolving. In this study, whole genome sequencing enabled us to define 43 new Pseudomonas species and provide an update of the Pseudomonas evolutionary and taxonomic relationships. Phylogenies based on the rpoD gene and whole genome sequences, including, respectively, 316 and 313 type strains of Pseudomonas, revealed sixteen groups of Pseudomonas and, together with the distribution of cyclic lipopeptide biosynthesis gene clusters, enabled the partitioning of the P. putida group into fifteen subgroups. Pairwise average nucleotide identities were calculated between type strains and a selection of 60 genomes of non-type strains of Pseudomonas. Forty-one strains were incorrectly assigned at the species level and among these, 19 strains were shown to represent an additional 13 new Pseudomonas species that remain to be formally classified. This work pinpoints the importance of correct taxonomic assignment and phylogenetic classification in order to perform integrative studies linking genetic diversity, lifestyle, and metabolic potential of Pseudomonas spp.


2020 ◽  
Author(s):  
Fabrizio Menardo ◽  
Liliana K. Rutaihwa ◽  
Michaela Zwyer ◽  
Sonia Borrell ◽  
Iñaki Comas ◽  
...  

AbstractLineage 1 (L1) and 3 (L3) are two lineages of the Mycobacterium tuberculosis complex (MTBC), causing tuberculosis (TB) in humans. L1 and L3 are endemic to the Rim of the Indian Ocean, the region that accounts for most of the world’s new TB cases. Despite their relevance for this region, L1 and L3 remain understudied. Here we analyzed 2,938 L1 and 2,030 L3 whole genome sequences originating from 69 countries. We show that South Asia played a central role in the dispersion of these two lineages to neighboring regions. Moreover, we found that L1 exhibits signatures of local adaptation at the esxH locus, a gene coding for a secreted effector that targets the human endosomal sorting complex, and is included in several vaccine candidates. Our study highlights the importance of genetic diversity in the MTBC, and sheds new light on two of the most important MTBC lineages affecting humans.


2021 ◽  
Author(s):  
Bernardo Gutierrez ◽  
Sully Marquez ◽  
Belen Prado-Vivar ◽  
Monica Becerra-Wong ◽  
Juan Jose Guadalupe ◽  
...  

Characterisation of SARS-CoV-2 genetic diversity through space and time can reveal trends in virus importation and domestic circulation, and permit the exploration of questions regarding the early transmission dynamics. Here we present a detailed description of SARS-CoV-2 genomic epidemiology in Ecuador, one of the hardest hit countries during the early stages of the COVID-19 pandemic. We generate and analyse 160 whole genome sequences sampled from all provinces of Ecuador in 2020. Molecular clock and phylgeographic analysis of these sequences in the context of global SARS-CoV-2 diversity enable us to identify and characterise individual transmission lineages within Ecuador, explore their spatiotemporal distributions, and consider their introduction and domestic circulation. Our results reveal a pattern of multiple international importations across the country, with apparent differences between key provinces. Transmission lineages were mostly introduced before the implementation of non-pharmaceutical interventions (NPIs), with differential degrees of persistence and national dissemination.


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
Vanessa E. Rees ◽  
Deanna S. Deveson Lucas ◽  
Carla López-Causapé ◽  
Yuling Huang ◽  
Tom Kotsimbos ◽  
...  

ABSTRACTHypermutablePseudomonas aeruginosaisolates (hypermutators) have been identified in patients with cystic fibrosis (CF) and are associated with reduced lung function. Hypermutators display a greatly increased mutation rate and an enhanced ability to become resistant to antibiotics during treatment. Their prevalence has been established among patients with CF, but it has not been determined for patients with CF in Australia. This study aimed to determine the prevalence of hypermutableP. aeruginosaisolates from adult patients with CF from a health care institution in Australia and to characterize the genetic diversity and antibiotic susceptibility of these isolates. A total of 59 P. aeruginosaclinical isolates from patients with CF were characterized. For all isolates, rifampin (RIF) mutation frequencies and susceptibility to a range of antibiotics were determined. Of the 59 isolates, 13 (22%) were hypermutable. Whole-genome sequences were determined for all hypermutable isolates. Core genome polymorphisms were used to assess genetic relatedness of the isolates, both to each other and to a sample of previously characterizedP. aeruginosastrains. Phylogenetic analyses showed that the hypermutators were from divergent lineages and that hypermutator phenotype was mostly the result of mutations inmutLor, less commonly, inmutS. Hypermutable isolates also contained a range of mutations that are likely associated with adaptation ofP. aeruginosato the CF lung environment. Multidrug resistance was more prevalent in hypermutable than nonhypermutable isolates (38% versus 22%). This study revealed that hypermutableP. aeruginosastrains are common among isolates from patients with CF in Australia and are implicated in the emergence of antibiotic resistance.


Sign in / Sign up

Export Citation Format

Share Document