scholarly journals Whole-Genome Characterization and Genotyping of Global WU Polyomavirus Strains

2010 ◽  
Vol 84 (12) ◽  
pp. 6229-6234 ◽  
Author(s):  
Seweryn Bialasiewicz ◽  
Rebecca Rockett ◽  
David W. Whiley ◽  
Yacine Abed ◽  
Tobias Allander ◽  
...  

ABSTRACT Exploration of the genetic diversity of WU polyomavirus (WUV) has been limited in terms of the specimen numbers and particularly the sizes of the genomic fragments analyzed. Using whole-genome sequencing of 48 WUV strains collected in four continents over a 5-year period and 16 publicly available whole-genome sequences, we identified three main WUV clades and five subtypes, provisionally termed Ia, Ib, Ic, II, IIIa, and IIIb. Overall nucleotide variation was low (0 to 1.2%). The discriminatory power of the previous VP2 fragment typing method was found to be limited, and a new, larger genotyping region within the VP2/1 interface was proposed.


Heredity ◽  
2021 ◽  
Author(s):  
Axel Jensen ◽  
Mette Lillie ◽  
Kristofer Bergström ◽  
Per Larsson ◽  
Jacob Höglund

AbstractThe use of genetic markers in the context of conservation is largely being outcompeted by whole-genome data. Comparative studies between the two are sparse, and the knowledge about potential effects of this methodology shift is limited. Here, we used whole-genome sequencing data to assess the genetic status of peripheral populations of the wels catfish (Silurus glanis), and discuss the results in light of a recent microsatellite study of the same populations. The Swedish populations of the wels catfish have suffered from severe declines during the last centuries and persists in only a few isolated water systems. Fragmented populations generally are at greater risk of extinction, for example due to loss of genetic diversity, and may thus require conservation actions. We sequenced individuals from the three remaining native populations (Båven, Emån, and Möckeln) and one reintroduced population of admixed origin (Helge å), and found that genetic diversity was highest in Emån but low overall, with strong differentiation among the populations. No signature of recent inbreeding was found, but a considerable number of short runs of homozygosity were present in all populations, likely linked to historically small population sizes and bottleneck events. Genetic substructure within any of the native populations was at best weak. Individuals from the admixed population Helge å shared most genetic ancestry with the Båven population (72%). Our results are largely in agreement with the microsatellite study, and stresses the need to protect these isolated populations at the northern edge of the distribution of the species.



2020 ◽  
Author(s):  
Inès Levade ◽  
Ashraful I. Khan ◽  
Fahima Chowdhury ◽  
Stephen B. Calderwood ◽  
Edward T. Ryan ◽  
...  

ABSTRACTVibrio cholerae can cause a range of symptoms in infected patients, ranging from severe diarrhea to asymptomatic infection. Previous studies using whole genome sequencing (WGS) of multiple bacterial isolates per patient have shown that Vibrio cholerae can evolve a modest amount of genetic diversity during symptomatic infection. Little is known about V. cholerae genetic diversity within asymptomatic infected patients. To achieve increased resolution in the detection of Vibrio cholerae diversity within individual infections, we applied culture-based population genomics and metagenomics to a cohort of symptomatic and asymptomatic cholera patients. While the metagenomic approach allowed us to detect more mutations in symptomatic patients compared to the culture-based approach, WGS of isolates was still necessary to detect V. cholerae diversity in asymptomatic carriers, likely due to their low Vibrio cholerae load. We found that symptomatic and asymptomatic patients contain similar levels of within-patient diversity, and discovered V. cholerae hypermutators in some patients. While hypermutators appeared to generate mostly selectively neutral mutations, non-mutators showed signs of convergent mutation across multiple patients, suggesting V. cholerae adaptation within hosts. Our results highlight the power of metagenomics combined with isolate sequencing to characterize within-patient diversity in acute V. cholerae infection and asymptomatic infection, while providing evidence for hypermutator phenotypes within cholera patients.IMPORTANCEPathogen evolution within patients can impact phenotypes such as drug resistance and virulence, potentially affecting clinical outcomes. V. cholerae infection can result in life-threatening diarrheal disease, or asymptomatic infection. Here we describe whole-genome sequencing of V. cholerae isolates and culture-free metagenomic sequencing from stool of symptomatic cholera patients and asymptomatic carriers. Despite the acuteness of cholera infections, we found evidence for adaptive mutations in the V. cholerae genome that occur independently and repeatedly within multiple symptomatic patients. We also identified V. cholerae hypermutator phenotypes within 6 out of 14 patients, which appear to generate mainly neutral or deleterious mutations. Our work sets the stage for future studies of the role of hypermutators and within-patient evolution in explaining the variation from asymptomatic carriage to symptomatic cholera.



2019 ◽  
Vol 8 (15) ◽  
Author(s):  
Moon Y. F. Tay ◽  
Frederick Adzitey ◽  
Stella Amelia Sultan ◽  
Joseph Makija Tati ◽  
Kelyn L. G. Seow ◽  
...  

Here, we report the draft genome sequences of 16 nontyphoidal Salmonella enterica isolates obtained from locally produced meats in Tamale, Ghana, which are commonly consumed by most natives as an important protein source. The draft genomes will help provide a molecular snapshot of Salmonella enterica isolates found in these retail meats in Tamale.



2020 ◽  
Vol 9 (21) ◽  
Author(s):  
Daniel L. Vera ◽  
Arman Seuylemezian ◽  
Kyle S. Landry ◽  
Ryan Hendrickson

ABSTRACT Whole-genome sequencing and annotation have allowed planetary protection engineers to assess the functional capabilities of microorganisms isolated from spacecraft hardware and associated surfaces. Here, we report draft genomes of six strains isolated from the InSight mission, determined using Oxford Nanopore- and Illumina-based sequencing.



2019 ◽  
Vol 8 (17) ◽  
Author(s):  
Kevin Cole ◽  
Dona Foster ◽  
Julie E. Russell ◽  
Tanya Golubchik ◽  
Martin Llewelyn ◽  
...  

Members of the genus Staphylococcus have been isolated from humans, animals, and the environment. Accurate identification with whole-genome sequencing requires access to data derived from type strains.



2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S286-S287
Author(s):  
Evangelina Namburete

Abstract Background Knowing the genetic diversity of M. tuberculosis strains causing drug-resistant tuberculosis (DR-TB) in high burden TB and low resources countries such as Mozambique is a key factor to TB disease spread control and world TB epidemic control. Whole-genome sequencing (WGS) better describes molecular diversity, lineages and sub lineages, relationship between strains, underline mutations conferring drug-resistant TB, which may not be shown by molecular and phenotypic tests. As far as we know this is the first study that describes genetic diversity of M. tuberculosis strains causing DR-TB and using WGS in central region of Mozambique.We aim to describe genetic diversity of M. tuberculosis strains causing DR-TB in central Mozambique. Methods A total of 35 strains from Beira Mozambique were evaluated with genotypic tests (Genotype MTBDRplus™, and MTBDRsl™); phenotypic (MGIT-SIRE™) and DST. All isolates resistant to isoniazid (H) or rifampicin (R) or both were submitted to WGS Illumina HiSeq 2000 and analyzed with TB profiler database and phylogenetic tree was done using Figtree tool. This was a descriptive cross-sectional study. Results WGS shown that strains analyzed, belongs to three of six major lineages, with Lineage 4: 25(71.4%); Lineage 1: 5(14.3%); and Lineage 2 Beijing family: 5(14.3%)]. All pre-XDR strains 3(8.6%) were from lineage 4.3. By WGS, all 35 strains had any mutations conferring DR-TB while in one strain, mutation was not shown by genotypic neither phenotypic DST. Compared with genotypic tests, WGS had best performance in showing mutation conferring resistance to etambutol 12/35 (34.3%) and 7/35 (20%). Conclusion The DR-TB disease in Beira Mozambique is mainly caused by M. tuberculosis strains of Lineage 4, sub-lineage 3 although lineage 1 and 2 are also present. WGS shows underline mutations causing DR–TB that are not detected by genotypic and phenotypic DST test. Disclosures All authors: No reported disclosures.



2016 ◽  
Vol 4 (6) ◽  
Author(s):  
Claudia Carolina Carbonari ◽  
Nahuel Fittipaldi ◽  
Sarah Teatero ◽  
Taryn B. T. Athey ◽  
Luis Pianciola ◽  
...  

Shiga toxin-producing Escherichia coli strains are worldwide associated with sporadic human infections and outbreaks. In this work, we report the availability of high-quality draft whole-genome sequences for 19 O157:H7 strains isolated in Argentina.



2018 ◽  
Vol 82 (1) ◽  
pp. 30-38 ◽  
Author(s):  
RICHARD ELSON ◽  
ADEDOYIN AWOFISAYO-OKUYELU ◽  
TREVOR GREENER ◽  
CRAIG SWIFT ◽  
ANAÏS PAINSET ◽  
...  

ABSTRACT This article describes the identification and investigation of two extended outbreaks of listeriosis in which crabmeat was identified as the vehicle of infection. Comparing contemporary and retrospective typing data of Listeria monocytogenes isolates from clinical cases and from food and food processing environments allowed the detection of cases going back several years. This information, combined with the analysis of routinely collected enhanced surveillance data, helped to direct the investigation and identify the vehicle of infection. Retrospective whole genome sequencing (WGS) analysis of isolates provided robust microbiological evidence of links between cases, foods, and the environments in which they were produced and demonstrated that for some cases and foods, identified by fluorescent amplified fragment length polymorphism, the molecular typing method in routine use at the time, were not part of the outbreak. WGS analysis also showed that the strains causing illness had persisted in two food production environments for many years and in one producer had evolved into two strains over a period of around 8 years. This article demonstrates the value of reviewing L. monocytogenes typing data from clinical cases together with that from foods as a means of identifying potential vehicles and sources of infection in outbreaks of listeriosis. It illustrates the importance of reviewing retrospective L. monocytogenes typing alongside enhanced surveillance data to characterize extended outbreaks and inform control measures. Also, this article highlights the advantages of WGS analysis for strain discrimination and clarification of evolutionary relationships that refine outbreak investigations and improve our understanding of L. monocytogenes in the food chain.



Author(s):  
Justine Schaeffer ◽  
Steliana Huhulescu ◽  
Anna Stoeger ◽  
Franz Allerberger ◽  
Werner Ruppitsch

Background: Diphtheria is a vaccine preventable disease with a high potential for re-emergence. One of its causative agent is Corynebacterium diphtheriae, some strains producing the diphtheria toxin. From 2011 to 2019, 57 clinical C. diphtheriae strains were isolated in Austria, either from the respiratory track or from skin infections. Objectives: The aim of the study was to investigate the genetic diversity of these C. diphtheriae isolates using whole genome sequencing. Methods: Isolates were characterized by genome wide comparison using single nucleotide polymorphism or core genome multilocus sequence typing, and by searching sequence data for antimicrobial resistance genes and genes involved in diphtheria toxin production. Results: Genetic diversity between the isolates was high, with no clear distribution over time or place. C. belfantii isolates were separated from other strains, and were strongly associated with respiratory infections (OR = 57). Two clusters, limited in time and space, were identified. Almost 40% of strains carried resistance genes against tetracycline or sulfonamides, mostly from skin infections. Microbiological tests showed that 55% of isolates were resistant to penicillin, but did not carry genes conferring β-lactam resistance. Diphtheria toxin gene with no non-synonymous mutation was found in three isolates only. Conclusion: This study showed that sequencing can provide valuable information complementing routine microbiological and epidemiological investigations. It allowed us to identify unknown clusters, evaluate antimicrobial resistances more broadly and support toxigenicity results obtained by PCR. For these reasons, C. diphtheriae surveillance could strongly benefit from the routine implementation of whole genome sequencing.



Sign in / Sign up

Export Citation Format

Share Document