Effect of Slenderness Ratio on the Natural Frequencies of Pre-Twisted Cantilever Beams of Uniform Rectangular Cross-Section

1971 ◽  
Vol 13 (1) ◽  
pp. 51-59 ◽  
Author(s):  
B. Dawson ◽  
N. G. Ghosh ◽  
W. Carnegie

This paper is concerned with the vibrational characteristics of pre-twisted cantilever beams of uniform rectangular cross-section allowing for shear deformation and rotary inertia. A method of solution of the differential equations of motion allowing for shear deformation and rotary inertia is presented which is an extension of the method introduced by Dawson (1)§ for the solution of the differential equations of motion of pre-twisted beams neglecting shear and rotary inertia effects. The natural frequencies for the first five modes of vibration are obtained for beams of various breadth to depth ratios and lengths ranging from 3 to 20 in and pre-twist angle in the range 0–90°. The results are compared with those obtained by an alternative method (2), where available, and also to experimental results.

2013 ◽  
Vol 690-693 ◽  
pp. 309-313
Author(s):  
Yong Sheng Ren ◽  
Qi Yi Dai

This paper presents a theoretical study of the dynamic characteristics of rotating composite cantilever beams. Considering shear deformation and cross section warping, the equations of motion of the rotating cantilever beams are derived using Hamilton’s principle. The Galerkin’s method is used in order to analysis the free vibration behaviors of the model. Comparison of the theoretical solutions has been made with the results obtained from the finite element method, which prove the validity of the model presented in this paper. Natural frequencies are obtained for circular tubular composite beams. The effects of fiber orientation, rotating speed and structure parameters on modal frequencies are investigated.


1972 ◽  
Vol 94 (1) ◽  
pp. 267-278 ◽  
Author(s):  
W. Carnegie ◽  
J. Thomas

This paper deals with the effect of shear deformation and rotary inertia on the frequencies of flexural vibration of pre-twisted and non-pre-twisted uniform and tapered cantilever beams. The equations of motion are derived and transformed into a set of linear simultaneous algebraic equations by using finite-difference solutions for the derivatives. The resulting eigenvalue matrix equation is solved for the frequency parameters by a QR transformation. The effects of various tapers, depth-to-length ratios and pre-twist angles on the frequencies of vibration are investigated for the first five modes. Results obtained are compared with those presented by other investigators where available and show good agreement. The experimental results presented also show good agreement with the corresponding theoretical values.


1968 ◽  
Vol 72 (688) ◽  
pp. 341-344 ◽  
Author(s):  
B. Dawson

Summary The natural frequencies of vibration of a cantilever beam allowing for rotary inertia and shear deformation are obtained by the approximate Ritz method. The workability of the method is dependent upon the approximating functions chosen for the dynamic displacement curves. A series of characteristic functions representing the normal modes of vibration of cantilever beams in simple flexure is used as the approximating functions for both deflections due to flexure and shear deformation. Good agreement is shown between frequencies obtained by the Ritz method and those resulting from an analytical solution. The effect upon the natural frequencies of allowing for rotary inertia alone is shown and it is seen to increase rapidly with mode number.


2018 ◽  
Vol 5 (2) ◽  
pp. 171717 ◽  
Author(s):  
Srivatsa Bhat K ◽  
Ranjan Ganguli

In this paper, we look for non-uniform Rayleigh beams isospectral to a given uniform Rayleigh beam. Isospectral systems are those that have the same spectral properties, i.e. the same free vibration natural frequencies for a given boundary condition. A transformation is proposed that converts the fourth-order governing differential equation of non-uniform Rayleigh beam into a uniform Rayleigh beam. If the coefficients of the transformed equation match with those of the uniform beam equation, then the non-uniform beam is isospectral to the given uniform beam. The boundary-condition configuration should be preserved under this transformation. We present the constraints under which the boundary configurations will remain unchanged. Frequency equivalence of the non-uniform beams and the uniform beam is confirmed by the finite-element method. For the considered cases, examples of beams having a rectangular cross section are presented to show the application of our analysis.


1975 ◽  
Vol 97 (4) ◽  
pp. 1199-1203
Author(s):  
Joseph R. Gartner ◽  
Shrikant T. Bhat

A relatively thin—thickness to radius ratio—circular ring with rectangular cross section has been investigated to numerically evaluate the effect of eccentricity on the in plane bending natural frequencies and mode shapes. The assumed boundary conditions correspond to a ring freely supported in space such that it is free to translate and rotate with rigid body motion. A truncated Fourier series solution is assumed in an energy formulation to obtain numerical approximations of the eigenvalues and the corresponding eigenvectors for different eccentricities. Extensional and inextensional models for both Flu¨gge and Love-Timoshenko ring models were considered with two thickness to radius ratios. Results show different rates of decrease in the magnitudes of the natural frequencies for different mode configurations. Existence of closely spaced frequencies along with modal coupling are noticeable at 50 percent eccentricity.


1956 ◽  
Vol 23 (1) ◽  
pp. 103-108
Author(s):  
E. T. Cranch ◽  
Alfred A. Adler

Abstract Using simple beam theory, solutions are given for the vibration of beams having rectangular cross section with (a) linear depth and any power width variation, (b) quadratic depth and any power width variation, (c) cubic depth and any power width variation, and (d) constant depth and exponential width variation. Beams of elliptical and circular cross section are also investigated. Several cases of cantilever beams are given in detail. The vibration of compound beams is investigated. Several cases of free double wedges with various width variations are discussed.


2020 ◽  
Vol 10 (15) ◽  
pp. 5245
Author(s):  
Chunfeng Wan ◽  
Huachen Jiang ◽  
Liyu Xie ◽  
Caiqian Yang ◽  
Youliang Ding ◽  
...  

Based on the classical Timoshenko beam theory, the rotary inertia caused by shear deformation is further considered and then the equation of motion of the Timoshenko beam theory is modified. The dynamic characteristics of this new model, named the modified Timoshenko beam, have been discussed, and the distortion of natural frequencies of Timoshenko beam is improved, especially at high-frequency bands. The effects of different cross-sectional types on natural frequencies of the modified Timoshenko beam are studied, and corresponding simulations have been conducted. The results demonstrate that the modified Timoshenko beam can successfully be applied to all beams of three given cross sections, i.e., rectangular, rectangular hollow, and circular cross sections, subjected to different boundary conditions. The consequence verifies the validity and necessity of the modification.


1977 ◽  
Vol 44 (4) ◽  
pp. 737-742 ◽  
Author(s):  
B. Downs

Natural frequencies of doubly symmetric cross section, isotropic cantilever beams, based on both Euler and Timoshenko theories, are presented for 36 combinations of linear depth and breadth taper. Results obtained by a new dynamic discretization technique include the first eight frequencies for all geometries and the stress distribution patterns for the first four (six) modes in the case of the wedge. Comparisons are drawn wherever possible with exact solutions and with other numerical results appearing in the literature. The results display outstanding accuracy and demonstrate that it is possible to model with high precision the dynamic behaviour of continuous systems by discretization on to a strictly limited number of degrees of freedom.


1969 ◽  
Vol 20 (2) ◽  
pp. 178-190 ◽  
Author(s):  
W. Carnegie ◽  
B. Dawson

SummaryTheoretical and experimental natural frequencies and modal shapes up to the fifth mode of vibration are given for a straight blade of asymmetrical aerofoil cross-section. The theoretical procedure consists essentially of transforming the differential equations of motion into a set of simultaneous first-order equations and solving them by a step-by-step finite difference procedure. The natural frequency values are compared with results obtained by an analytical solution and with standard solutions for certain special cases. Good agreement is shown to exist between the theoretical results for the various methods presented. The equations of motion are dependent upon the coordinates of the axis of the centre of flexure of the beam relative to the centroidal axis. The effect of variations of the centre of flexure coordinates upon the frequencies and modal shapes is shown for a limited range of coordinate values. Comparison is made between the theoretical natural frequencies and modal shapes and corresponding results obtained by experiment.


Sign in / Sign up

Export Citation Format

Share Document