Deep indentation and terminal ballistics of polycarbonate

2017 ◽  
Vol 103 ◽  
pp. 225-230 ◽  
Author(s):  
Zvi Rosenberg ◽  
Roman Kositski
Author(s):  
Michio Morita ◽  
Jay Boyd Best

The species of the planarian Dugesia dorotocephala was used as the experimental animal to study a neuroglial cell in the ventral nerve cord. Animals were fixed with 3% buffered glutaraldehyde solution and postfixed with 1% buffered osmium tetroxide.The neuroglial cell is multipolar, expanding into three or four cytoplasmic processes with many daughter branches. Some neuroglial processes are found to extend perpendicular to the longitudinal nerve fibers, whereas others are seen to be parallel to them. The nucleus of the neuroglial cell is irregular in shape and frequently has a deep indentation. Convex portions of the nucleus seem to be related to the areas from which cytoplasmic processes are extended. Granular endoplasmic reticulum (Fig. 4), Golgi body (Fig. 2), mitochondria (Figs. 1 and 2), microtubules (Fig. 4), and many glycogen granules are observable in the electron dense neuroglial cytoplasm. Neuroglial cells are also observed to contain various sizes of phagosomes and lipids (Fig. 2).


2021 ◽  
Vol 155 (4) ◽  
pp. 23-48
Author(s):  
Tomasz Błaszczak ◽  
Mariusz Magier

A numerical analysis over influence of kinetic energy projectile sabot structure on the armour depth penetration is presented in the paper. The analysis has identified an influence of sabot different materials into projectile combat performance, and some areas of sabot structure where its shape can be optimised. The finite element method in Solidworks Simulation environment was used in analysis. Due to it the dynamical loads of the sabot at the time of firing could be investi-gated. The influence of sabot different materials and projectile geometry modifications on the strength of penetrator sabot joining was studied. A pattern of dynamical loads for the penetrator sabot joining was simulated and visualised. For selected options of the structure the calculations were performed over the terminal ballistics. It allowed an identification of potential development trends for this brand of ammunition.


2011 ◽  
Vol 133 (2) ◽  
Author(s):  
D. Anderson ◽  
A. Warkentin ◽  
R. Bauer

Simulation of deep indentation, and the associated pile-up effects, requires a robust and accurate finite element model capable of naturally handling the large deformations present. This work successfully demonstrates that the Eulerian formulation is capable of accurately reproducing the forces and general material response of deep indentation. It was found that, in the absence of friction, sink-in dominates at indentation depths less than 1.1% of the indenter radius, there is a transition from sink-in to pile-up from 1.1% to 2.3% of the indenter radius, and pile-up is fully developed at indentation depths larger than 13.2% of the indenter radius for the 4340 steel workpiece and the 0.508 mm radius indenter presented in this work. Friction tended to marginally increase the sink-in and transition depths as well as reduce the material height at the onset of fully developed pile-up due to a reduction in the tensile radial strain directly under the indenter.


2018 ◽  
Vol 10 (4) ◽  
pp. 421-438 ◽  
Author(s):  
Mark G Stewart ◽  
Brianna Dorrough ◽  
Michael D Netherton

The penetration of projectiles into semi-infinite targets helps in the understanding and modelling of terminal ballistics. The article describes field test results of 5.56×45 mm F1 Ball and 7.62×51 mm M80 Ball ammunition. The targets were 25-mm-thick mild and high strength steel plates of Grade 250 MPa and 350 MPa, respectively. The tests recorded penetration depth, muzzle and impact velocities, and bullet mass. Despite its smaller calibre, the 5.56 mm × 45 mm F1 Ball ammunition recorded deeper penetrations than the larger calibre 7.62 mm × 51 mm M80 Ball ammunition. This is due to the 5.56 mm ammunition comprising a hardened steel penetrator and lead core, whereas the 7.62 mm ammunition comprised only a lead core. Multiple shots were fired for each type of munition. The coefficient of variation of steel penetration is approximately 0.10 and 0.03 for 5.56 mm and 7.62 mm rounds, respectively. The article also presents predictive models of steel penetration depth and compares these to the field test results.


1958 ◽  
Author(s):  
ROBERT J. DENINGTON
Keyword(s):  

1977 ◽  
Vol 99 (3) ◽  
pp. 804-806 ◽  
Author(s):  
J. Tirosh ◽  
D. Iddan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document