Copper oxide nanocrystallites fabricated by thermal oxidation of pre-sputtered copper films at different temperatures and under oxygen and argon flows

Optik ◽  
2017 ◽  
Vol 142 ◽  
pp. 334-342 ◽  
Author(s):  
M.A. Awad ◽  
N.M.A. Hadia
2021 ◽  
pp. 161130
Author(s):  
Calin Constantin Moise ◽  
Laura-Bianca Enache ◽  
Veronica Anastasoaie ◽  
Oana Andreea Lazar ◽  
Geanina Valentina Mihai ◽  
...  

Author(s):  
Mohammad Hemmat Esfe

In the present article, the effects of temperature and nanoparticles volume fraction on the viscosity of copper oxide-ethylene glycol nanofluid have been investigated experimentally. The experiments have been conducted in volume fractions of 0 to 1.5 % and temperatures from 27.5 to 50 °C. The shear stress computed by experimental values of viscosity and shear rate for volume fraction of 1% and in different temperatures show that this nanofluid has Newtonian behaviour. The experimental results reveal that in a given volume fraction when temperature increases, viscosity decreases, but relative viscosity varies. Also, in a specific temperature, nanofluid viscosity and relative viscosity increase when volume fraction increases. The maximum amount of increase in relative viscosity is 82.46% that occurs in volume fraction of 1.5% and temperature of 50 °C. Some models of computing nanofluid viscosity have been suggested. The greatest difference between the results obtained from these models and experimental results was down of 4 percent that shows that there is a very good agreement between experimental results and the results obtained from these models.


2013 ◽  
Vol 594-595 ◽  
pp. 113-117 ◽  
Author(s):  
Dewi Suriyani Che Halin ◽  
Ibrahim Abu Talib ◽  
Abdul Razak Daud ◽  
Muhammad Azmi Abdul Hamid

Copper oxide films were prepared via sol-gel like spin coating starting from methanolic solutions of cupric chloride onto the TiO2 substrates. Films were obtained by spin coating under room conditions (temperature, 25-30 °C) and were subsequently annealed at different temperatures (200-400 °C) in oxidizing (air) and inert (N2) atmospheres. X-ray diffraction (XRD) patterns showed crystalline phases, which were observed as a function of the annealing conditions. The film composition resulted single or multi-phasic depending on both temperature and atmosphere. The grain size of film was measured using scanning electron microscopy (SEM) and the surface roughness of thin films was characterized by atomic force microscopy (AFM). The grain size of which was annealed in air at 300 °C was 30.39 nm with the surface roughness of 96.16 nm. The effects of annealing atmosphere on the structure and morphology of copper oxide thin films are reported.


2012 ◽  
Vol 488-489 ◽  
pp. 437-441
Author(s):  
Raden Dadan Ramdan ◽  
Budi Prawara ◽  
Rochim Suratman

Thermal oxidation is believed as an important phenomenon that naturally occurs on material subjected to elevated temperature such as NiAl-Al2O3 coated material. In the present study, thermal oxidation on this coated layer was prepared by heating processes of NiAl-Al2O3 coated on mild carbon steel. Deposition of NiAl-Al2O3 was performed by high-velocity oxy fuel (HVOF) process, whereas subsequent heating processes were performed at 3 different temperatures 600oC, 800oC and 1000oC. After the process, the effects of this thermal oxidation process on the phases formation, microstructure and qualitative toughness of thermally sprayed NiAl-Al2O3 coating were investigated. The results showed that significant amount of NiAl-Al2O3 phase was transformed into NiO phase by heating process at temperature higher than 800°C. In addition, decreasing of thickness of the coating layer was also found as the service temperature increases from 800 to 1000oC. Increasing of hardness was also observed as the heating temperature increases, which is predicted due to the formation of excessive oxide on the coating layer that in turn might impart the toughness of this layer. These conditions suggested that a careful determination of service temperature have to be taken in order to avoid excessive oxidation of the coating layer.


2004 ◽  
Vol 824 ◽  
Author(s):  
A. B. Kolyadin ◽  
V. Ya. Mishin ◽  
K. Ya. Mishin ◽  
A. S. Aloy ◽  
T. I. Koltsova

AbstractThe oxidation of UO2–type spent nuclear fuel (SNF) in gaseousmedia was studied at different temperatures and oxygen contents using gravimetric and powder X-ray diffraction (XRD) techniques. The aim of the study was to determine the mechanism(s) of thermal-oxidation alteration of SNF during long-term dry storage. The samples used in the experiments were chips of RBMK-1000 fuel rods.Oxidation of UO2with a mean burn-up of 10.7 and 19.73 MW d/kg in humid air was observed at a temperature as low as 150°C. At 200°C nearly all of the UO2was transformed into U3O8 between 3500-4000 hours. In a humid nitrogen environment containing of 0.05-1.3 vol. % oxygen at 300°C, the UO2 completely transformed to U3O8 between 2500-3000 hours. Oxidation of UO2in samples with small amounts of jacket damage (e.g., <0.04 MM2)ll progresses more slowly and after â3000 hours the oxygen-to-uranium ratio was 2.56.Stabilization of the oxidation process was not observed in the fuel samples upto an O/U ratio of 2.4, which may be attributed to the smallburn-up of the fuel under investigation.


2013 ◽  
Vol 328 ◽  
pp. 710-714 ◽  
Author(s):  
Suttinart Noothongkaew ◽  
Supakorn Pukird ◽  
Worasak Sukkabot ◽  
Bualoy Kasemporn ◽  
Prayoon Songsiririttikul ◽  
...  

ZnO nanowhiskers were formed by a simple oxidation of metallic zinc powder 99.9% at different temperatures from 400-900 °C for 2 hours on the silicon substrate. The result can be obtained after the thermal oxidation process, the ZnO nanowhiskers with different morphologies at different temperatures in which these morphologies and composition of ZnO nanostructures were characterized by scanning electron microscope, (SEM) and X-ray diffraction, XRD. It was found that the products were nanowhiskers, the structure are triangular shapes with average width of 10-50 nm at the root, 10-30 nm at the tip and length in the range of 1-3 μm was observed by SEM. Temperature in the range of 600-700 °C was suitable for the preparation of ZnO nanowhiskers. At higher temperature of 800 °C, the concentrations of ZnO structures become lower and stronger. At the oxidized temperature of 900 °C, ZnO nanowhiskers were not found and surface morphology become to porous. These results indicate that the oxidation rate is faster than the diffusion rate of Zn vapor on the surface of ZnO nuclei.


2021 ◽  
Vol 282 ◽  
pp. 128679
Author(s):  
A. Maytorena-Sánchez ◽  
J. Hernández-Torres ◽  
F. López-Huerta ◽  
M.A. Hernández-Campos ◽  
L. Zamora-Peredo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document