Optimal design of composite achromatic wave plate based on the improvement with initial point selection of intelligent algorithm

Optik ◽  
2021 ◽  
Vol 225 ◽  
pp. 165722
Author(s):  
Mingyu Ou ◽  
Lei Liu ◽  
Yan Liu ◽  
Lanling Lan ◽  
Shiwei Xie ◽  
...  
2021 ◽  
Vol 20 ◽  
pp. 133-139
Author(s):  
Alexander Zemliak

The different design trajectories have been analyzed in the design space on the basis of the new system design methodology. Optimal position of the design algorithm start point was analyzed to minimize the CPU time. The initial point selection has been done on the basis of the before discovered acceleration effect of the system design process. The geometrical dividing surface was defined and analyzed to obtain the optimal position of the algorithm start point. The numerical results of the design of passive and active nonlinear electronic circuits confirm the possibility of the optimal selection of the starting point of the design algorithm.


Author(s):  
O.V. Tatarnikov ◽  
W.A. Phyo ◽  
Lin Aung Naing

This paper describes a method for optimizing the design of a spar-type composite aircraft wing structure based on multi-criterion approach. Two types of composite wing structures such as two-spar and three-spar ones were considered. The optimal design of a wing frame was determined by the Pareto method basing on three criteria: minimal weight, minimal wing deflection, maximal safety factor and minimal weight. Positions of wing frame parts, i.e. spars and ribs, were considered as optimization parameters. As a result, an optimal design of a composite spar-type wing was proposed. All the calculations necessary to select the optimal structural and design of the spar composite wing were performed using nonlinear static finite element analysis in the FEMAP with NX Nastran software package.


2021 ◽  
Vol 12 (1) ◽  
pp. 89-102
Author(s):  
Bjørn-Jostein Singstad ◽  
Naomi Azulay ◽  
Andreas Bjurstedt ◽  
Simen S. Bjørndal ◽  
Magnus F. Drageseth ◽  
...  

Abstract Due to the possibilities in miniaturization and wearability, photoplethysmography (PPG) has recently gained a large interest not only for heart rate measurement, but also for estimating heart rate variability, which is derived from ECG by convention. The agreement between PPG and ECG-based HRV has been assessed in several studies, but the feasibility of PPG-based HRV estimation is still largely unknown for many conditions. In this study, we assess the feasibility of HRV estimation based on finger PPG during rest, mild physical exercise and mild mental stress. In addition, we compare different variants of signal processing methods including selection of fiducial point and outlier correction. Based on five minutes synchronous recordings of PPG and ECG from 15 healthy participants during each of these three conditions, the PPG-based HRV estimation was assessed for the SDNN and RMSSD parameters, calculated based on two different fiducial points (foot point and maximum slope), with and without outlier correction. The results show that HRV estimation based on finger PPG is feasible during rest and mild mental stress, but can give large errors during mild physical exercise. A good estimation is very dependent on outlier correction and fiducial point selection, and SDNN seems to be a more robust parameter compared to RMSSD for PPG-based HRV estimation.


2019 ◽  
pp. 109-115
Author(s):  
Didmanidze Ibraim ◽  
Donadze Mikheil

The article deals with such an important selection of the elements of electronic scheme of the given configuration, when the certain requirements of technical task are satisfied and at the same time the selected optimality criteria reach the extreme value. The gives task has been solved by the method of one-criterion optimization, in particular, the method of center gravity. To formalize the given scheme we have compiled a mathematical model of optimization, which considers the requirements of technical task. The optimal design task of the presented electronic scheme was brought to the task of multi criteria optimization. The computational experiments have been resulted in the Pareto-optimal solutions, from which there was selected a compromise on that corresponds to the minimum capacity, required by the scheme. According to the optimal values of resistors, we have conducted a computerized analysis of the transient process of the given electronic scheme with the help of a computer program Electronics Workbench.


2013 ◽  
Vol 34 (3) ◽  
pp. 89-104
Author(s):  
Andrzej Rusin ◽  
Marian Lipka ◽  
Henryk Łukowicz

Abstract The paper presents the results of the numerical analyses for the steam turbine rotor, dedicated for the newly-designed 900 MW steam unit with supercritical steam parameters (650 °C, 30.0 MPa). Basing on the design calculations, an optimal design solution was determined. Review of the available literature on materials for turbine rotors with supercritical steam parameters was done. Then the start-ups of the turbine were simulated. Thermal and strength states were analyzed. As a result, an optimal start-up characteristic was obtained.


1969 ◽  
Vol 91 (1) ◽  
pp. 193-197 ◽  
Author(s):  
William H. Bussell

A method intended for programming on a computer is presented for designing four bar function generators based on infinitesimal kinematic synthesis. By using the outlined procedure, one can obtain mechanism linkage specifications and tables of performance of a large number of the possible mechanisms for a single design point. Selection of the most suitable mechanism by inspection of the tables is then possible.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Yan Sun ◽  
Shuxue Ding

The Wu-Huberman clustering is a typical linear algorithm among many clustering algorithms, which illustrates data points relationship as an artificial “circuit” and then applies the Kirchhoff equations to get the voltage value on the complex circuit. However, the performance of the algorithm is crucially dependent on the selection of pole points. In this paper, we present a novel pole point selection strategy for the Wu-Huberman algorithm (named as PSWH algorithm), which aims at preserving the merit and increasing the robustness of the algorithm. The pole point selection strategy is proposed to filter the pole point by introducing sparse rate. Experiments results demonstrate that the PSWH algorithm is significantly improved in clustering accuracy and efficiency compared with the original Wu-Huberman algorithm.


2020 ◽  
Vol 7 (1) ◽  
pp. 1770913
Author(s):  
O. O. Agboola ◽  
B. O. Akinnuli ◽  
B. Kareem ◽  
M. A. Akintunde

Sign in / Sign up

Export Citation Format

Share Document