A new approach to cutting state monitoring in end-mill machining

2005 ◽  
Vol 45 (7-8) ◽  
pp. 909-921 ◽  
Author(s):  
Dong-Yeul Song ◽  
Nobuo Otani ◽  
Takayuki Aoki ◽  
Yuichiro Kamakoshi ◽  
Yasuhiro Ohara ◽  
...  
2016 ◽  
Vol 693 ◽  
pp. 1221-1227 ◽  
Author(s):  
Zhen Xi Jiang ◽  
Jie Sun ◽  
Jian Feng Li

The existing end mill is hard to balance the tool rigidity, heat dissipation and chip evacuation. In this study, the geometries of groove and micro-blade of the end mill machining titanium are optimized, through imitating the corn leaf’s tooth based on bionics. The peripheral cutting edge is composed of linear first rake, parabolic second rake and rear face. The chip-hold groove is composed of parabolic main groove and cubic curve vice groove. The cutting process of straight tooth and designed composite tooth are simulated by constructing the two-dimensional orthogonal cutting model using ABAQUS. The results show that: compared to the straight tooth, the designed composite tooth inhibits the generation of serrated chip, and the fluctuations of cutting force are smaller, the squeezing effect on the machined surface is weaker.


Author(s):  
Lei Ren ◽  
Shilong Wang ◽  
Lili Yi

Wheel position (including wheel location and orientation) in the flute grinding process of an end-mill determines the ground flute's geometric parameters, i.e., rake angle, core radius, and flute width. Current technologies for calculating the wheel position to guarantee the three parameters' accuracy are either time-consuming or only applicable to the grinding wheels with singular points. In order to cope with this problem, this paper presents a generalized and efficient approach for determining the wheel position accurately in five-axis flute grinding of cylindrical end-mills. A new analytic expression of the wheel location is derived and an original algorithm is developed to search for the required wheel position. This approach can apply not only to the wheels with fillets but also to the wheels with singular points. Simulation examples are provided to validate the new approach and compared with the results from other literature. Besides the ability to determine the wheel position, the new approach can evaluate extrema of the core radius and flute width that a specified wheel can generate. Owing to the evaluated extrema, automatic 1V1 wheel customization according to the designed flute is realized in this paper. This work can improve the efficiency and automation degree of the flute grinding process and lay a good foundation for the development of a comprehensive computer-aided design and computer-aided manufacturing system for end-mill manufacturing.


2011 ◽  
Vol 121-126 ◽  
pp. 4753-4757
Author(s):  
Guo Chao Li ◽  
Jie Sun ◽  
Yong He

This paper describes a new approach to establish the helix flute model of solid carbide end mills. Based on the theory of differential geometry and coordinate transformation, a mathematical model of the end mill helix flute will be established.The main idea of the study is to envelop the helix flute by a one-parameter surface group which consists of the cross-sectional profiles of the wheel.Then, the mathematical model will be quickly verified by MATLAB.Thus the end mill design time will be saved and the new mathematical model will be checked effectively.


2011 ◽  
Vol 201-203 ◽  
pp. 841-845
Author(s):  
Zhan Hua You ◽  
Fei Tang ◽  
Shu Zhe Li ◽  
Xiao Feng Yue ◽  
Xiao Hao Wang

To facilitate the manufacturing of an end mill, this paper presents a manufacturing model of a flat-end mill using a five-axis computer numerical control (CNC) grinding machine. Using input data of end mill geometry, wheels geometry, wheel setting and machine setting, the NC code for machining will be generated directly from a solid modeling then used as input to simulate the end mill machining in 3 Dimension before machining. The 3D simulation system of the end mill grinding is generated by VBA and AutoCAD2008. Machining simulation consists of a sequence of Boolean operations on difference between the tool and the grinding wheels through NC code. Then the major design parameters of a cutter, such as relief angle and inner radius, can be verified by interrogating the section profile of its solid model. The manufacturing model presented in this paper provides a practical and efficient method for developing CAM software for the manufacture of an end mill.


2011 ◽  
Vol 295-297 ◽  
pp. 2521-2525 ◽  
Author(s):  
Xiao Feng Yue ◽  
Fei Tang ◽  
Shu Zhe Li ◽  
Zhan Hua You ◽  
Xiao Hao Wang

A novel algorithm for the ball-end mill relief using a five-axis computer numerical control (CNC) grinding machine and the simulation of the ball-end mill based on a CAM system is presented in this paper. In this study, In order to obtain an accurate normal relief angle, which is one of the key factors affecting tool cutting performance, a tool coordinate system based on the required relief angle and the cutting edge was established. Then, by the proposed tool coordinate system, an algorithm to determine the position between the grinding wheel and the tool is proposed, and then the relevant formulations are deduced. The coordinates of grinding point when the step of relief surface is grinded are calculated.Using the input data of a ball-end mill geometry, wheels geometry, wheel setting and machine setting, the NC code for machining will be generated. Then the code will be used as input to simulate the ball-end mill machining in 3 Dimension before real machining. The algorithm of ball-end mill relief can be authenticated by the 3D simulation system.


Mechanik ◽  
2016 ◽  
pp. 468-469
Author(s):  
Jan Burek ◽  
Marcin Sałata ◽  
Jarosław Buk ◽  
Paweł Sułkowicz

2018 ◽  
Vol 2 (3) ◽  
Author(s):  
Andrey K. Tugengol'd ◽  
A.F. Lysenko ◽  
A.I. Izyumov ◽  
R.N. Voloshin

This article covers the actual issues that rise up the trend of computerized integrated production. The large number of machining tools for production of a specific workpieces requires a principally new approach to the control of such production. In such type of industrial information, monitoring and control systems replace the human operator. Therefore machining systems state monitoring becomes essential today in control of the machining operations. The concept for E-Mind Machine intelligent platform for the CNC machining tools is presented in this paper and the detailed information on its structure and components is given.


Sign in / Sign up

Export Citation Format

Share Document