Investigation of size effects on material behavior of thin sheet metals using hydraulic bulge testing at micro/meso-scales

2008 ◽  
Vol 48 (9) ◽  
pp. 1014-1029 ◽  
Author(s):  
Sasawat Mahabunphachai ◽  
Muammer Koç
Author(s):  
Eren Billur ◽  
Muammer Koc¸

Hydraulic bulge testing is a material characterization method used as an alternative to tensile testing with the premise of accurately representing the material behavior to higher strain levels (∼70% as appeared to ∼30% in tensile test) in a biaxial stress mode. However, there are some major assumptions (such as continuous hemispherical bulge shape, thinnest point at apex) in hydraulic bulge analyses that lead to uncertainties in the resulting flow stress curves. In this paper, the effect of these assumptions on the accuracy and reliability of flow stress curves is investigated. The goal of this study is to determine the most accurate method for analyzing the data obtained from the bulge testing when continuous and in-line thickness measurement techniques are not available. Specifically, in this study the stress-strain relationships of two different materials (SS201 and Al5754) are obtained based on hydraulic bulge test data using various analysis methods for bulge radius and thickness predictions (e.g., Hill’s, Chakrabarty’s, Panknin’s theories, etc.). The flow stress curves are calculated using pressure and dome height measurements and compared to the actual 3-D strain measurement from a stereo optical and non-contact measurement system ARAMIS. In addition, the flow stress curves obtained from stepwise experiments are compared with the ones from above methods. Our findings indicate that Enikeev’s approach for thickness prediction and Panknin’s approach for bulge radius calculation result in the best agreement with both stepwise experiment results and 3D optical measurement results.


2005 ◽  
Vol 6-8 ◽  
pp. 805-808
Author(s):  
F. Sekine

The blanking of thin sheet metals using progressive dies is an important process on production of precision electronic machine parts. As a model of IC leadframe, an I-shaped and an Lshaped models were blanked and influences of blanking conditions on dimensional accuracy of blanked lead were examined. Furthermore, a mechanical model is proposed to explain the affect of the blanking conditions on product accuracy. In these days, more fine leads are required as electronic machines become more precise and accurate. It must be treated that leads are firmly held for blanking leadframes accurately. In this paper, an effective method of stripper holding leads strongly are discussed and a new method using newly designed stripper is proposed. Consequently the effect of it on lead accuracy is proved.


2021 ◽  
Author(s):  
YONI SHCHEMELININ ◽  
JARED W. NELSON ◽  
ROBERTA AMENDOLA

The use of carbon fiber reinforced polymer composites has increased with the increased need for high-strength, low-density materials, particularly in the aviation industry. Stretch broken carbon fiber (SBCF) is a form of carbon fiber created by the randomized breaking of aligned fibers in a tow at inherent flaw points, resulting in a material constituted of collimated fiber fragments longer than chopped fibers. While continuous carbon fibers possess desirable material properties, the limited formability prevents their wider adoption. SBCF composites exhibit pseudo-plastic deformation that can potentially enable the use of traditional metal forming techniques like stamping and press forming well established in mass production applications. To investigate the formability of SBCF composites prepared with either continuous or stretch broken Hexcel IM-7 12K fiber, impregnated with Huntsman RDM 2019-053 resin, hydraulic bulge testing was performed to explore the strain behavior under biaxial stress conditions at elevated temperature under atmospheric pressure. Initial results show better formability of SBCF compared to continuous fiber, characterized by the axisymmetric response to the applied stress.


Author(s):  
James Magargee ◽  
Jian Cao ◽  
Rui Zhou ◽  
Morgan McHugh ◽  
Damon Brink ◽  
...  

The cyclic and compressive mechanical behavior of ultra-thin sheet metals was experimentally investigated. A novel transparent wedge device was designed and fabricated to prevent the buckling of thin sheets under compressive loads, while also allowing full field strain measurements of the specimen using digital imaging methods. Thin brass and stainless steel sheet metal specimens were tested using the micro-wedge device. Experimental results show that the device can be used to delay the onset of early buckling modes of a thin sheet under compression, which is critical in examining the compressive and cyclic mechanical behavior of sheet metals.


2020 ◽  
Vol 2020 (5) ◽  
pp. 74-79
Author(s):  
A.P. Raschepkin ◽  
◽  
I.P. Kondratenko ◽  
O.N. Karlov ◽  
R.S. Kryshchuk ◽  
...  

1969 ◽  
Vol 12 (50) ◽  
pp. 359-367 ◽  
Author(s):  
Takaji MIZUNO ◽  
Kiyoshi MATSUBARA ◽  
Hiroshi KIMURA

2011 ◽  
Vol 10 ◽  
pp. 1961-1966 ◽  
Author(s):  
J. Galán López ◽  
P. Verleysen ◽  
I. De Baere ◽  
J. Degrieck

Author(s):  
Zhijun Wu ◽  
Guanlin Zhang ◽  
Bingxu Wang ◽  
Kelvin Shih

Resistance Spot Welding (RSW) is one of the most common and dominant technologies utilized in the automotive industry to join the thin sheet metals together, and expulsion is a common phenomenon during the operation. How to ensure the high quality nugget formation and joining performance is essential to ensure the quality and integrity of structures. In this study, solid state resistance spot welding is introduced in order to prevent expulsion. The effect of welding current and welding time on the mechanical performance of the solid state RSW in terms of nugget size, tensile performance and nugget formation will be investigated experimentally by using steel sheet metals. Microstructure and micro-hardness of the nugget cross-section will be evaluated as well.


Sign in / Sign up

Export Citation Format

Share Document