scholarly journals On the relationship between cutting forces and anisotropy features in the milling of LPBF Inconel 718 for near net shape parts

Author(s):  
José David Pérez ◽  
Luis Norberto López de Lacalle ◽  
Gorka Urbikain ◽  
Octavio Pereira ◽  
Silvia Martínez ◽  
...  
2019 ◽  
Vol 11 (10) ◽  
pp. 168781401988377
Author(s):  
Yu He ◽  
Zhongming Zhou ◽  
Ping Zou ◽  
Xiaogang Gao ◽  
Kornel F Ehmann

With excellent properties, high-temperature superalloys have become the main application materials for aircraft engines, gas turbines, and many other devices. However, superalloys are typically difficult to machine, especially for the thread cutting. In this article, an ultrasonic vibration–assisted turning system is proposed for thread cutting operations in superalloys. A theoretical analysis of ultrasonic vibration–assisted thread cutting is carried out. An ultrasonic vibration–assisted system was integrated into a standard lathe to demonstrate thread turning in Inconel 718 superalloy. The influence of ultrasonic vibration–assisted machining on workpiece surface quality, chip shape, and tool wear was analyzed. The relationship between machining parameters and ultrasonic vibration–assisted processing performance was also explored. By analyzing the motion relationship between tool path and workpiece surface, the reasons for improved workpiece surface quality by ultrasonic vibration–assisted machining were explained.


Mechanika ◽  
2020 ◽  
Vol 26 (6) ◽  
pp. 540-544
Author(s):  
Jayaraj JEEVAMALAR ◽  
Sundaresan RAMABALAN ◽  
Chinnamuthu SENTHILKUMAR

Modelling is used for correlating the relationship between the input process parameters and the output responses during the machining process. To characterize real-world systems of considerable complexity, an Artificial Neural Network (ANN) model is regularly used to replace the mathematical approximation of the relationship. This paper explains the methodological procedure and the outcome of the ANN modeling process for Electrical Discharge Drilling of Inconel 718 superalloy and hollow tubular copper as tool electrode. The most important process parameters in this work are peak current, pulse on time and pulse off time with machining performances of material removal rate and surface roughness. The experiments were performed by L20 Orthogonal Array. In such conditions, an Artificial Neural Network model is developed using MATLAB programming on the Feed Forward Back Propagation technique was used to predict the responses. The experimental data were separated into three parts to train, test the network and validate the model. The developed model has been confirmed experimentally for training and testing in considering the number of iterations and mean square error convergence criteria. The developed model results are to approximate the responses fairly exactly. The model has the mean correlation coefficient of 0.96558. Results revealed that the proposed model can be used for the prediction of the complex EDM drilling process.


2017 ◽  
Vol 13 (1) ◽  
pp. 1 ◽  
Author(s):  
Xiaohong Lu ◽  
Zhenyuan Jia ◽  
Hua Wang ◽  
Xiaochen Hu ◽  
Guangjun Li ◽  
...  

2011 ◽  
Vol 105-107 ◽  
pp. 1170-1174
Author(s):  
Hui Yun Li ◽  
Guang Yu Shi

This paper gives a brief explanation of the failure mechanism of rock fragmentation in rock cutting. The JOHNSON_HOLMGIST_CONCRETE is selected as the rock material model in numerical simulation with confining pressure and damage influence introduced. We use the non-linear dynamic finite element software LS/DYNA to simulate the dynamic process of cutting rock. The cutting forces acting on disc cutter are computed. The relationship between cutting forces and penetration depth, confining pressure and damage parameters are obtained. The results show that, the cutting forces increase with the penetration depth. They are larger in equal confining pressure than unequal condition. The forces are amplified with the damage parameters increasing. The conclusion provides a reference for the prediction of the cutting forces.


2020 ◽  
Vol 9 (4) ◽  
pp. 8459-8468 ◽  
Author(s):  
Octavio Pereira ◽  
Ainhoa Celaya ◽  
Gorka Urbikaín ◽  
Adrián Rodríguez ◽  
Asier Fernández-Valdivielso ◽  
...  

1997 ◽  
Vol 119 (1) ◽  
pp. 125-129 ◽  
Author(s):  
J. W. Novak ◽  
Y. C. Shin ◽  
F. P. Incropera

An experimental study has been performed to assess the feasibility of using a hybrid machining system to improve the machinability of Inconel 718. An assembled plasma enhanced machining (PEM) system is described, and experimental results obtained from both conventional and plasma enhanced machining of Inconel 718 are compared. Several advantages of PEM over conventional machining are demonstrated, including improvement of surface roughness, lower cutting forces and extended tool life.


Author(s):  
HZ Li ◽  
J Wang

This article presents a cutting force model for the milling of Inconel 718 whose machinability is considered to be very poor. The Johnson–Cook constitutive material model is used to determine the flow stress of Inconel 718 while the shear angle is determined based on a shear plane model assuming that the total energy on the shear plane plus the energy on the rake face is minimum. The temperature in the machining region is determined by using an iterative process. Finally, the cutting forces on each tooth of the milling cutter are calculated from its chip load considering the oblique cutting effects. The model is then verified by comparing the model predictions with the experimental data under the corresponding conditions, which shows a relatively good agreement with an average percentage error of 10.5% along the feed and normal directions.


2017 ◽  
Vol 13 (1) ◽  
pp. 1
Author(s):  
Likun Si ◽  
Guangjun Li ◽  
Xiaochen Hu ◽  
Zhenyuan Jia ◽  
Hua Wang ◽  
...  

2012 ◽  
Vol 500 ◽  
pp. 105-110 ◽  
Author(s):  
Huai Zhong Li ◽  
Jun Wang

nconel 718 is one of the most commercially important superalloys but with very poor machinability. It has a very high yield stress and a high tendency to adhesion and work-hardening. A recent trend of improving the machining processes of difficult-to-cut materials is to move towards dry cutting operations. This paper presents an experimental study of the cutting forces in high speed dry milling of Inconel 718 using a milling cutter with coated carbide inserts. It is found that the peak cutting forces increase with an increase in chip load in a nonlinear way, but cutting speed does not show a significant influence on the cutting force for the range of cutting speeds tested in this study.


Sign in / Sign up

Export Citation Format

Share Document