A Study of Cutting Forces in High-Speed Dry Milling of Inconel 718

2012 ◽  
Vol 500 ◽  
pp. 105-110 ◽  
Author(s):  
Huai Zhong Li ◽  
Jun Wang

nconel 718 is one of the most commercially important superalloys but with very poor machinability. It has a very high yield stress and a high tendency to adhesion and work-hardening. A recent trend of improving the machining processes of difficult-to-cut materials is to move towards dry cutting operations. This paper presents an experimental study of the cutting forces in high speed dry milling of Inconel 718 using a milling cutter with coated carbide inserts. It is found that the peak cutting forces increase with an increase in chip load in a nonlinear way, but cutting speed does not show a significant influence on the cutting force for the range of cutting speeds tested in this study.

2010 ◽  
Vol 129-131 ◽  
pp. 1004-1008 ◽  
Author(s):  
M.Z.A. Yazid ◽  
C.H. Che Hassan ◽  
A.G. Jaharah ◽  
A.I. Gusri ◽  
M.S. Ahmad Yasir

This paper reports the results of an experimental works, where Inconel 718, a highly corrosive resistant, nickel-based super alloy, was finish-turning under high speed conditions. The machining processes were carried out at three different cutting conditions (DRY, MQL 50 ml/h and MQL 100 ml/h), three levels of cutting speed (Vc=90, 120 and 150 m/min), two levels of feed rate (f=0.10 and 0.15 mm/rev) and two levels of cutting depth (d=0.30 and 0.50 mm). The tool wear and flank wear progression were monitored, measured and recorded progressively at various time intervals. The experiments indicated that MQL condition performs better than dry condition in term of tool life. Most of the tool failures during machining were due to gradual failure where abrasive and notching wear on the flank face was the dominant followed by, fracture on the flank edge and nose radius. Tool failure due to crater wear was not significant. Wear mechanism such as abrasive and adhesion were observed on the flank face and diffusion wear was observed on the rake face.


2010 ◽  
Vol 135 ◽  
pp. 96-101 ◽  
Author(s):  
Xiao Li Zhu ◽  
Song Zhang ◽  
Tong Chao Ding ◽  
Yuan Wei Wang

The experimental study presented in this paper aims to investigate the effects of cutting parameters on cutting forces, and search the optimal cutting parameters for the minimum cutting forces during turning Inconel 718 under dry cutting conditions. Based on Taguchi method, a L25 (53) array was designed to conduct the turning experiments. The experimental results indicate that the best condition for the minimum cutting force components is the combination of 45m/min cutting speed, 0.08mm/r feed rate, and 0.2mm depth of cut. The effects of the cutting parameters on cutting forces are investigated while employing the analysis of variance (ANOVA). Finally, the quadratic regression equations for cutting forces were formulated, which can well describe the relationship between cutting parameters and cutting forces.


2009 ◽  
Vol 69-70 ◽  
pp. 466-470
Author(s):  
Ya Jun Liu ◽  
Jia Bin Huang ◽  
Meng Yang Qin ◽  
Wei Xia ◽  
Yong Tang

This paper gives the details of High Speed Milling experiments with AISI 52100 steel (HRC52) by using coated carbide end mills. Cutting force and Surface roughness data are presented. The effects of cutting speeds (1000-8000rpm), widths of cut (0.05-0.4mm) and cutting conditions (dry cutting and dry cutting with air coolant) are investigated. The results show that in high speed milling of hardened steels, when cutting speed surpasses a critical value, cutting forces decrease as cutting speed increasing; and the increasing of widths of cut causes the increase of cutting forces approximately linearly; surface roughness does not experience obvious increase or decrease and has a minimum in a specific condition; the machining results of dry cutting with air.


2013 ◽  
Vol 589-590 ◽  
pp. 76-81
Author(s):  
Fu Zeng Wang ◽  
Jun Zhao ◽  
An Hai Li ◽  
Jia Bang Zhao

In this paper, high speed milling experiments on Ti6Al4V were conducted with coated carbide inserts under a wide range of cutting conditions. The effects of cutting speed, feed rate and radial depth of cut on the cutting forces, chip morphologies as well as surface roughness were investigated. The results indicated that the cutting speed 200m/min could be considered as a critical value at which both relatively low cutting forces and good surface quality can be obtained at the same time. When the cutting speed exceeds 200m/min, the cutting forces increase rapidly and the surface quality degrades. There exist obvious correlations between cutting forces and surface roughness.


2005 ◽  
Vol 291-292 ◽  
pp. 433-438 ◽  
Author(s):  
Toshiyuki Obikawa ◽  
Y. Kamata

MQL (Minimum Quantity Lubrication) technology was applied to finish-turning of a nickel base superalloy, Inconel 718, with a PVD coated carbide tool with a super lattice coating of TiN/AlN. Cutting lubricant used for MQL was a biodegradable synthesis ester, which was supplied to the cutting point with compressed air from the both sides of flank and rake faces of the tool. At a cutting speed of 1.0 m/s and an air supply pressure of 0.4 MPa, MQL cutting showed longer tool life and better surface finish than both the dry cutting and wet cutting. When increasing the pressure of the air supply from 0.40 MPa to 0.60 MPa, however, the corner wear, the most predominant wear in all the cutting conditions in this study, increased. When the cutting speed was increased to 1.5 m/s, the tool life in MQL decreased drastically. These results suggested that when finishing Inconel 718, the special care must be taken for choosing the pressure of air supply and cutting speed. The obtained results provided a useful understanding of the complicated influence of MQL on the cutting performance of Inconel 718.


2012 ◽  
Vol 565 ◽  
pp. 454-459 ◽  
Author(s):  
Yun Chen ◽  
Huai Zhong Li ◽  
Jun Wang

Titanium alloys are difficult-to-cut materials. This paper presents an experimental study of the effects of different cutting conditions and tool wear on cutting forces in dry milling Ti6Al4V with coated carbide inserts. The experimental results show that the peak forces increase with the increase in the feed rate and depth of cut. With the cutting speed increment in the range from 50 m/min to 150 m/min the peak forces decrease, while at further higher cutting speeds investigated peak forces increase. The decrease of the peak forces is due to thermal softening of the workpiece material and the increase is because of the strain hardening rate of Ti6Al4V. The tool wear experiment reveals that the major tool wear mechanism is the flank wear. The variations of the peak forces are caused by both the tool wear propagation and the thermal effects.


Sign in / Sign up

Export Citation Format

Share Document