scholarly journals Failure mechanism and control technology of water-immersed roadway in high-stress and soft rock in a deep mine

2017 ◽  
Vol 27 (2) ◽  
pp. 245-252 ◽  
Author(s):  
Renshu Yang ◽  
Yongliang Li ◽  
Dongming Guo ◽  
Lan Yao ◽  
Tongmao Yang ◽  
...  
Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 423
Author(s):  
Chunde Ma ◽  
Jiaqing Xu ◽  
Guanshuang Tan ◽  
Weibin Xie ◽  
Zhihai Lv

Red shale is widely distributed among the deep mine areas of Kaiyang Phosphate Mine, which is the biggest underground phosphate mine of China. Because of the effect of various factors, such as high stress, ground water and so on, trackless transport roadways in deep mine areas were difficult to effectively support for a long time by using traditional supporting design methods. To deal with this problem, some innovative works were carried out in this paper. First, mineral composition and microstructure, anisotropic, hydraulic mechanical properties and other mechanical parameters of red shale were tested in a laboratory to reveal its deformation and failure characteristics from the aspect of lithology. Then, some numerical simulation about the failure process of the roadways in layered red shale strata was implemented to investigate the change regulation of stress and strain in the surrounding rock, according to the real rock mechanical parameters and in-situ stress data. Therefore, based on the composite failure law and existing support problems of red shale roadways, some effective methods and techniques were adopted, especially a kind of new wave-type bolt that was used to relieve rock expansion and plastic energy to prevent concentration of stress and excess deformation. The field experiment shows the superiorities in new techniques have been verified and successfully applied to safeguard roadway stability.


2014 ◽  
Vol 638-640 ◽  
pp. 794-797
Author(s):  
Fei Pan ◽  
Sheng Guo Cheng

With the development of transportation construction, soft rock tunnel with high geostress construction has become a key problem to overcome of traffic engineering construction. In order to explore the deformation mechanism and control technology of soft rock tunnel with high geostress, Xiakou tunnel engineering as an example, the geological characteristics and deformation characteristics of the tunnel were analyzed, to obtain the deformation mechanism of soft rock tunnels with high geostress, and to develop deformation control technology, the results provide a basis and reference for the domestic and foreign the similar engineering construction.


2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Weijian Yu ◽  
Fangfang Liu

The purpose of this paper is to solve the problem that deep and close-distance cavern and roadway group were easily affected by the adjacent chamber or roadway excavation disturbance and low stability and significant deformation of surrounding rock occurred. The stability and control technology of surrounding rock in the main shaft and auxiliary shaft system has been analyzed by the adjacent chamber and roadway group of −850 m level in Qujiang Mine, China, as an engineering background. Firstly, the numerical calculation of the excavation chamber was, respectively, carried out in different ways with the propagation theory of the excavation disturbance wave. The results show that the interaction of adjacent chamber excavation was more intense. When excavated at the same time, there is a large increase in the movement of the sides and the roof-floor of the chamber and roadway. Then, the mechanism of interaction between low-high stress and excavation disturbance was considered, the corresponding control principles were provided, and a set of critical technologies and equipment were designed according to the deformation characteristics of the large deformation soft surrounding rock. Finally, the comprehensive control method was put forward with the water pump house as an example, that is, anchor, metal net, grouting, combined anchor cable and large-diameter anchor cable. And the related support parameters were determined by the internal damage of the surrounding rock chamber. The numerical simulation results show that the surrounding rock deformation of the chamber and roadway reduced with the revised support program, which the expansion of the rock mass loose circle prevented effectively. The site test shows that the convergence rate of surrounding rock with the improved support was less than 0.2 mm/d, and the rock deformation of chamber and roadway suppressed significantly.


2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Yuchun Mei ◽  
Weiteng Li ◽  
Ning Yang ◽  
Gang Wang ◽  
Tingchun Li ◽  
...  

Numerical simulation tests were performed on the arch-bolt combined supported mining tunnel through an improved numerical simulation approach. The typical soft rock roadway was took as the background, and the influencing factors such as ground stress level, lateral pressure coefficient, and support type and parameters were considered. The failure mechanism of a semicircular roadway with two straight walls was analyzed; results showed that the arch legs’ inward bending deformation and the arch-rock separation are the breakthrough of the global failure of the supporting system, and rock bolts breakage promoted the failure process. The effects of different controlling measures were analyzed including enlarging the bolt diameter, replacing the conventional bolts with energy-absorbing bolts, and setting arch locking bolts on the arch legs. The field test of the concrete-filled steel tube (CFST) arch-bolt composite support scheme was carried out in a high-stress soft rock roadway, and the results indicate the reliability of the main conclusions.


Sign in / Sign up

Export Citation Format

Share Document