Fibrous soft tissues damage evaluation with a coupled thermo-visco-hyperelastic model

2020 ◽  
Vol 118 ◽  
pp. 103260
Author(s):  
Arash Mohammadali Zadeh Fard ◽  
Farid Vakili-Tahami
2018 ◽  
Vol 7 (4.26) ◽  
pp. 205
Author(s):  
Nor Fazli Adull Manan ◽  
Linasuriani Muhamad ◽  
Zurri Adam Mohd Adnan ◽  
Mohd Azman Yahaya ◽  
Jamaluddin Mahmud

By having specific mechanical properties of skin, computational program and analysis become more reliable by showing the real skin behaviour. Up to date, mechanical properties of biological soft tissues (skin) haven’t been accepted solely for official usage. Therefore, characterisation of the skin biomechanical properties might contribute a new knowledge to the engineering and medical sciences societies. This paper highlights the success in characterising the hyperelastic parameters of leporine (rabbit) skin via experimental-numerical integration. A set of five sample of leporine skin were stretched using the conventional tensile test machine to generate the load-displacement graphs. Based on the Ogden’s constitutive equation and Mooney-Rivlin hyperelastic model, a stress-stretch equation was developed and a programme was written using Matlab. By varying the Ogden’s and Mooney-Rivlin’s parameters, the programme was capable of plotting stress-stretch and load-displacement graphs. The graphs that best match the experimental results will constitut to the corresponding coefficient, µ, and α for Ogden Model and C1 and C2 material parameter for Mooney-Rivlin Model that will best describe the behaviour of the leporine skin. The current results show that the Ogden’s coefficient and exponent for the subject was estimated to be (μ = 0.048MPa, α = 7.073) & (μ = 0.020MPa, α = 9.249) for Anterior-Posterior (AP) and Dorsal-Ventral (DV) respectively for Ogden Model. Meanwhile the value for Mooney-Rivlin Model were estimated to be (C1 = 1.271, C2 = 1.868) & (C1 = 1.128, C2 = 1.537) for AP and DV respectively, which is in close agreement to results found by other researchers. Further analyses for comparison could be carried out by developing mathematical model based on other constitutive equation such as Arruda-Boyce and Neo-Hookean. Nevertheless, this study has contributed to the knowledge about skin behaviour and the results are useful for references.  


2020 ◽  
Vol 54 (28) ◽  
pp. 4525-4534 ◽  
Author(s):  
Arnab Chanda ◽  
Subhodip Chatterjee ◽  
Vivek Gupta

Soft tissues are complex anisotropic composite systems comprising of multiple differently oriented layers of fiber embedded within a soft matrix. To date, soft tissues have been mainly characterized using simplified linear elastic material models, isotropic viscoelastic and hyperelastic models, and transversely isotropic models. In such models, the effect of fiber volume fraction (FVF), fiber orientation, and fiber-matrix interactions are missing, inhibiting accurate characterization of anisotropic tissue properties. The current work addresses this literature gap with the development of a novel soft composite based material framework to model tissue anisotropy. In this model, the fiber and matrix are considered as separate hyperelastic materials, and fiber-matrix interaction is modeled using multiplicative decomposition of the deformation gradient. The effect of the individual contribution of the fibers and matrix are introduced into the numerical framework for a single soft composite layer, and fiber orientation effects are incorporated into the strain energy functions. Also, strain energy formulations are developed for multiple soft composite layers with varying fiber orientations and contributions, describing the biomechanical behavior of an entire anisotropic tissue block. Stress-strain relationships were derived from the strain energy equations for a uniaxial mechanical test condition. To validate the model parameters, experimental models of soft composites tested under uniaxial tension were characterized using the novel anisotropic hyperelastic model (R2 = 0.983). To date, such a robust anisotropic hyperelastic composite framework has not been developed, which would be indispensable for experimental characterization of tissues and for improving the fidelity of computational biological models in future.


2011 ◽  
Vol 415-417 ◽  
pp. 2116-2120 ◽  
Author(s):  
Sara Golbad ◽  
Mohammad Haghpanahi

Pathologies in soft tissues are associated with changes in their elastic properties. Tumor tissues are usually stiffer than the fat tissues and other normal tissues and show the nonlinear behavior in large deformations. There have been a lot of researches about elastography (linear and nonlinear) as a new detecting technique based on mechanical behavior of tissue. In order to formulate the tissue’s nonlinear behavior, a strain energy function is required. For better estimation of nonlinear tissue parameters in elasticity imaging, non linear stress-strain curve of phantom is used. This work presents hyperelastic measurement results of tissue-mimicking phantom undergoing large deformation during uniaxial compression. For phantom samples, 8 hyperelastic models have been used. The results indicate that polynomial model with N=2 is the most accurate in terms of fitting experimental data. To compare the results between elastic and hyperelastic model, a 3-D finite element numerical model developed based on two different materials of elastic and hyperelastic material properties. The comparison confirm the approach of other recent studies about necessity of hyperelastic elastography and state that hyperelastic elastography should be used to formulate a technique for breast cancer diagnosis.


Author(s):  
C.A. Baechler ◽  
W. C. Pitchford ◽  
J. M. Riddle ◽  
C.B. Boyd ◽  
H. Kanagawa ◽  
...  

Preservation of the topographic ultrastructure of soft biological tissues for examination by scanning electron microscopy has been accomplished in the past by using lengthy epoxy infiltration techniques, or dehydration in ethanol or acetone followed by air drying. Since the former technique requires several days of preparation and the latter technique subjects the tissues to great stress during the phase change encountered during air-drying, an alternate rapid, economical, and reliable method of surface structure preservation was developed. Turnbill and Philpott had used a fluorocarbon for the critical point drying of soft tissues and indicated the advantages of working with fluids having both moderately low critical pressures as well as low critical temperatures. Freon-116 (duPont) which has a critical temperature of 19. 7 C and a critical pressure of 432 psi was used in this study.


Author(s):  
M.E. Lee ◽  
A. Moller ◽  
P.S.O. Fouche ◽  
I.G Gaigher

Scanning electron microscopy of fish scales has facilitated the application of micro-structures to systematics. Electron microscopy studies have added more information on the structure of the scale and the associated cells, many problems still remain unsolved, because of our incomplete knowledge of the process of calcification. One of the main purposes of these studies has been to study the histology, histochemistry, and ultrastructure of both calcified and decalcified scales, and associated cells, and to obtain more information on the mechanism of calcification in the scales. The study of a calcified scale with the electron microscope is complicated by the difficulty in sectioning this material because of the close association of very hard tissue with very soft tissues. Sections often shatter and blemishes are difficult to avoid. Therefore the aim of this study is firstly to develop techniques for the preparation of cross sections of fish scales for scanning electron microscopy and secondly the application of these techniques for the determination of the structures and calcification of fish scales.


Author(s):  
Yasushi P. Kato ◽  
Michael G. Dunn ◽  
Frederick H. Silver ◽  
Arthur J. Wasserman

Collagenous biomaterials have been used for growing cells in vitro as well as for augmentation and replacement of hard and soft tissues. The substratum used for culturing cells is implicated in the modulation of phenotypic cellular expression, cellular orientation and adhesion. Collagen may have a strong influence on these cellular parameters when used as a substrate in vitro. Clinically, collagen has many applications to wound healing including, skin and bone substitution, tendon, ligament, and nerve replacement. In this report we demonstrate two uses of collagen. First as a fiber to support fibroblast growth in vitro, and second as a demineralized bone/collagen sponge for radial bone defect repair in vivo.For the in vitro study, collagen fibers were prepared as described previously. Primary rat tendon fibroblasts (1° RTF) were isolated and cultured for 5 days on 1 X 15 mm sterile cover slips. Six to seven collagen fibers, were glued parallel to each other onto a circular cover slip (D=18mm) and the 1 X 15mm cover slip populated with 1° RTF was placed at the center perpendicular to the collagen fibers. Fibroblast migration from the 1 x 15mm cover slip onto and along the collagen fibers was measured daily using a phase contrast microscope (Olympus CK-2) with a calibrated eyepiece. Migratory rates for fibroblasts were determined from 36 fibers over 4 days.


Sign in / Sign up

Export Citation Format

Share Document