scholarly journals Pressure-assisted microsyringe 3D printing of oral films based on pullulan and hydroxypropyl methylcellulose

2021 ◽  
Vol 595 ◽  
pp. 120197
Author(s):  
M. Elbadawi ◽  
D. Nikjoo ◽  
T. Gustafsson ◽  
S. Gaisford ◽  
A.W. Basit
2019 ◽  
Vol 42 (11) ◽  
pp. 1898-1905 ◽  
Author(s):  
Tatsuaki Tagami ◽  
Natsumi Yoshimura ◽  
Eiichi Goto ◽  
Takehiro Noda ◽  
Tetsuya Ozeki

2019 ◽  
Vol 9 (01) ◽  
pp. 15-20
Author(s):  
B Pandey ◽  
A B Khan

The aim of the review was to explore the necessity, advantages and different techniques of oral films for enhancing solubility of poorly soluble drugs with an emphasis on the newer, state-of the art technologies, such as 3D printing and hot-melt extrusion (HME). The historical background of oral films is presented along with the regularly used techniques. The modern approach of quality-by-design (QbD) is unravelled, identifying appropriate critical process parameters (CPP) and applied to oral films. A section is devoted modern technologies such as 3D printing and HME of oral films. Oral films are innovative formulations by which poorly soluble drugs have been founds to give positive results in enhancing their solubility and dissolution characteristics. With modern sophisticated techniques, precise mass production of oral films has been given a thrust. Oral films have better patient compliance, improved biopharmaceutical properties, improved efficacy, and better safety. By applying QbD and implementation of modern technologies the newer generation of oral films are yielding promising results


2020 ◽  
Vol 591 ◽  
pp. 119983
Author(s):  
Yiliang Cheng ◽  
Hantang Qin ◽  
Nuria C. Acevedo ◽  
Xuepeng Jiang ◽  
Xiaolei Shi

Author(s):  
NEHA IMTIAZ ◽  
SUTAPA BISWAS MAJEE ◽  
GOPA ROY BISWAS

Objective: Oral disintegrating films consisting of hydrophilic polymer are designed to be quickly hydrated by saliva, adhere to the mucosa and disintegrate rapidly to release the drug. The aim of the present study was to prepare stable, flexible swellable rapid release oral films with hydroxypropyl methylcellulose E15 LV (HPMC) and polyvinyl alcohol (PVA) in different ratios. Guar gum was incorporated as the mucoadhesive agent. In order to achieve rapid disintegration of the film cross carmellose sodium (superdisintegrant) and surfactant like Tween 80 were added. The model drug used in the study was diclofenac sodium. Methods: Films were developed using HPMC E15 LV and PVA by solvent casting method and characterized for thickness, swelling index, disintegration time, folding endurance, drug content, and in vitro drug release pattern and kinetics. Results: The prepared swellable rapid release oral films were quite flexible and transparent with a smooth texture. The swelling index study confirmed that the films possessed the desired swelling property. Fastest disintegration was observed with the oral film containing HPMC: PVA in the ratio of 2:1, guar gum at 120 mg, 20% w/w crosscarmellose sodium and 4%w/w Tween 80. The swellable rapid release oral films were found to follow either Higuchi or Korsmeyer-Peppas model with drug release following either Fickian or non-Fickian diffusion. Maximum drug release of around 70% was observed from the above-mentioned film in 1hr in simulated salivary fluid. Conclusion: Therefore, swellable rapid release oral films with HPMC E15 LV: PVA, guar gum, croscarmellose sodium and Tween 80 demonstrated satisfactory swelling, rapid disintegration and improved drug release for oromucosal absorption.


2020 ◽  
Vol 1 (2) ◽  
pp. 55
Author(s):  
Dyah Hikmawati ◽  
Sarda Nugraheni ◽  
Aminatun Aminatun

3D printing technology application in tissue engineering could be provided by designing geometrical scaffold architecture which also functionates as drug delivery. For drug delivery scaffold on bone tuberculosis, the cell pore of the geometric design was filled with Injectable Bone Substitutes (IBS) which had streptomycin as anti-tuberculosis. In this study, scaffolds were synthesized in three cells geometric filled by Injectable Bone Substitutes (IBS), Hexahedron, Truccated Hexahedron, and Rhombicuboctahedron, which had 2.5 mm x 2.5 mm x 2.5 mm size dimension and 0.8 mm strut. The final design was printed in 3D with polylactic acid (PLA) filament using the FDM process (Fused Deposition Modelling). The composition of IBS paste was a mixture of hydroxyapatite (HA) and gelatine (GEL) 20% w/v with a ratio of 60:40, streptomycin 10 wt% and hydroxypropyl methylcellulose (HPMC) 4% w/v. It was then characterized using Fourier-transform infrared spectroscopy (FTIR). Scaffold–paste characterization was included pore size test of 3D printing result before and after injected using Scanning Electron Microscope SEM, porosity test, and compressive strength test. The result showed that the pore of scaffold design was 1379 µm and after injected with IBS paste, the pore leaving 231.04 µm of size. The scaffold with IBS paste porosity test showed ranges between 40,78-70,04% while the compressive strength of before and after injected ranges between 1,110-634 MPa and 2,217-6,971 MPa respectively. From the test results, the scaffold 3D printing with IBS paste in this study had suitable physical characteristics to be applicated on cancellous bones which were infected by tuberculosis.


Author(s):  
Sanjay P ◽  
Vishal Gupta N ◽  
Gowda Dv ◽  
Praveen Sivadasu

Objective: The main objective of the study was to formulate the oral disintegrating films loaded with atenolol by solvent-casting method and to carry out its evaluation studies.Methods: The films were prepared using the film-forming hydrophilic polymer like hydroxypropyl methylcellulose (E-5) and super disintegrant like pectin in various proportions.The formulated oral films were characterized for Fourier transform infrared (FTIR) and morphological evaluations. Various physicochemical parameters such as weight variation, folding endurance, surface pH, in vitro disintegration, and in vitro dissolution studies were carried out.Results: FTIR studies revealed that there was no drug-polymer interaction. The morphological evaluation of films showed that all the films were homogenous and transparent. The folding endurance test ensured that the films had sufficient brittleness and by weight variation test, it was inferred that all the films were within the deviation. The surface pH study showed the pH of the films was around neutral pH. The drug was well distributed in all the films. The films disintegrated within 120 s and the fastest being disintegrated in 30 s. Based on all the evaluation parameters, F6 had shown optimal performance and remarkable increase in drug release of 94.38% in 2 min.Conclusion: Thus, formulated oral disintegrating films can be termed as an alternative approach to deliver atenolol.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2415 ◽  
Author(s):  
Zhu Ding ◽  
Xiaodong Wang ◽  
Jay Sanjayan ◽  
Patrick Zou ◽  
Zhi-Kun Ding

A novel 3D printing material based on hydroxypropyl methylcellulose (HPMC)—improved sulphoaluminate cement (SAC) for rapid 3D construction printing application is reported. The hydration heat, setting time, fluidity of paste and mortar, shape retainability, and compressive strength of extruded SAC mortar were investigated. HPMC dosage, water-to-cement (W/C) ratio, and sand-to-cement (S/C) ratio were studied as the experimental parameters. Hydration heat results reveal HPMC could delay the hydration of SAC. The initial and final setting time measured using Vicat needle would be shortened in the case of W/C ratio of 0.3 and 0.35 with HPMC dosage from 0.5% to 1.5%, W/C ratio of 0.40 with HPMC dosage of 0.5%, 0.75%, and 1.5%, and W/C ratio of 0.45 with HPMC dosage of 0.45, or be extended in the case of W/C ratio of 0.4 with HPMC dosage of 1.0% and W/C ratio of 0.45 with HPMC dosage from 0.75% to 1.5%. Fluidity measurement shows HPMC significantly improves the shape retainability. Furthermore, the addition of HPMC remarkably increased the compressive strength of extruded mortar. The results showed that HPMC could be used to prepare 3D printing SAC having satisfactory shape retainability, setting time and compressive strength.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2666
Author(s):  
Pattaraporn Panraksa ◽  
Suruk Udomsom ◽  
Pornchai Rachtanapun ◽  
Chuda Chittasupho ◽  
Warintorn Ruksiriwanich ◽  
...  

Extrusion-based 3D printing technology is a relatively new technique that has a potential for fabricating pharmaceutical products in various dosage forms. It offers many advantages over conventional manufacturing methods, including more accurate drug dosing, which is especially important for the drugs that require exact tailoring (e.g., narrow therapeutic index drugs). In this work, we have successfully fabricated phenytoin-loaded orodispersible films (ODFs) through a syringe extrusion 3D printing technique. Two different grades of hydroxypropyl methylcellulose (HPMC E5 and HPMC E15) were used as the film-forming polymers, and glycerin and propylene glycol were used as plasticizers. The 3D-printed ODFs were physicochemically characterized and evaluated for their mechanical properties and in vitro disintegration time. Then, the optimum printed ODFs showing good mechanical properties and the fastest disintegration time were selected to evaluate their drug content and dissolution profiles. The results showed that phenytoin-loaded E15 ODFs demonstrated superior properties when compared to E5 films. It demonstrated a fast disintegration time in less than 5 s and rapidly dissolved and reached up to 80% of drug release within 10 min. In addition, it also exhibited drug content uniformity within United States Pharmacopeia (USP) acceptable range and exhibited good mechanical properties and flexibility with low puncture strength, low Young’s modulus and high elongation, which allows ease of handling and application. Furthermore, the HPMC E15 printing dispersions with suitable concentrations at 10% w/v exhibited a non-Newtonian (shear-thinning) pseudoplastic behavior along with good extrudability characteristics through the extrusion nozzle. Thus, HPMC E15 can be applied as a 3D printing polymer for a syringe extrusion 3D printer.


2021 ◽  
Author(s):  
Monica Pistone ◽  
Giuseppe Francesco Racaniello ◽  
Ilaria Arduino ◽  
Valentino Laquintana ◽  
Antonio Lopalco ◽  
...  

Abstract Niclosamide (NCS) is a drug that has been used as an anthelmintic and anti-parasitic active principle for about 40 years. Recently, some studies have highlighted its potential in treating various tumors, allowing a repositioning of this drug. Despite its potential, NCS is a Biopharmaceutical Classification System (BCS) Class II drug, and is consequently characterised by low aqueous solubility, poor dissolution rate and reduced bioavailability, which limits its applicability. In this work, we utilize a very novel technique, Direct Powder Extrusion (DPE) 3D printing, which overcomes the limitations of previously used techniques (Fused Deposition Modelling, FDM) to achieve direct extrusion of pharmaceutical grade powder mixtures consisting of NCS, hydroxypropyl methylcellulose (HPMC, Affinisol 15 LV), hydroxypropyl-b-cyclodextrin (HP-β-CD) and polyethylene glycol (PEG) 6000. For the first time, direct printing of powder blends containing HP-β-CD was explored. For all tablets, in vitro dissolution studies showed sustained drug release over 48 hours, but for tablets containing HP-β-CD, the release was faster. Solid-state characterisation studies showed that during extrusion, the drug lost its crystal structure and was evenly distributed within the polymer matrix. All printed tablets exhibited good mechanical and physical features and guarantee stability of the drug content for up to 3 months. This innovative printing technique has demonstrated the possibility to produce personalised pharmaceutical dosage forms starting directly from powders, avoiding the use of filament used by FDM.


Sign in / Sign up

Export Citation Format

Share Document