Thermodynamic analysis of single-stage and single-effect two-stage adsorption cooling cycles using indigenous coconut shell based activated carbon-CO2 pair

2017 ◽  
Vol 84 ◽  
pp. 238-252 ◽  
Author(s):  
Vinod Kumar Singh ◽  
E. Anil Kumar
2019 ◽  
Vol 170 ◽  
pp. 722-731 ◽  
Author(s):  
Bing Yang ◽  
Yucheng Liu ◽  
Qingling Liang ◽  
Mingyan Chen ◽  
Lili Ma ◽  
...  

2017 ◽  
Vol 143 ◽  
pp. 643-653 ◽  
Author(s):  
Anton Zubrik ◽  
Marek Matik ◽  
Slavomír Hredzák ◽  
Michal Lovás ◽  
Zuzana Danková ◽  
...  

2021 ◽  
Vol 17 (6) ◽  
pp. 768-775
Author(s):  
Fadina Amran ◽  
Nur Fatiah Zainuddin ◽  
Muhammad Abbas Ahmad Zaini

The present work was aimed at evaluating the performance of two-stage adsorber for methylene blue removal by coconut shell activated carbon in minimizing the adsorbent mass and contact time. The Langmuir constants were used to evaluate the optimum mass, while the pseudo-second-order constants for contact time. Results show that the adsorbent mass can only be minimized by 0.01 % due to the high adsorbent affinity towards methylene blue, while the contact time has been optimized to 12.2 min at the studied conditions. The effect of adsorbent affinity in two-stage adsorber was analyzed to shed some light about its importance in the design of two-stage adsorber. The performance evaluation was also discussed to bring insight into wastewater treatment applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Azrina Aziz ◽  
Mohamad Nasran Nasehir Khan ◽  
Mohamad Firdaus Mohamad Yusop ◽  
Erniza Mohd Johan Jaya ◽  
Muhammad Azan Tamar Jaya ◽  
...  

This research aims to optimize preparation conditions of coconut-shell-based activated carbon (CSAC) and to evaluate its adsorption performance in removing POP of dichlorodiphenyltrichloroethane (DDT). The CSAC was prepared by activating the coconut shell via single-stage microwave heating under carbon dioxide, CO2 flow. The total pore volume, BET surface area, and average pore diameter of CSAC were 0.420 cm3/g, 625.61 m2/g, and 4.55 nm, respectively. The surface of CSAC was negatively charged shown by the zeta potential study. Response surface methodology (RSM) revealed that the optimum preparation conditions in preparing CSAC were 502 W and 6 min for radiation power and radiation time, respectively, which corresponded to 84.83% of DDT removal and 37.91% of CSAC’s yield. Adsorption uptakes of DDT were found to increase with an increase in their initial concentration. Isotherm study revealed that DDT-CSAC adsorption system was best described by the Langmuir model with monolayer adsorption capacity, Qm of 14.51 mg/g. The kinetic study confirmed that the pseudo-second-order model fitted well with this adsorption system. In regeneration studies, the adsorption efficiency had slightly dropped from 100% to 83% after 5 cycles. CSAC was found to be economically feasible for commercialization owing to its low production cost and high adsorption capacity.


2013 ◽  
Vol 470 ◽  
pp. 818-822
Author(s):  
Di Fei Li ◽  
Quan Jun Liu ◽  
Zhuo Yue Lan

This paper presented the results of an investigation into effects of reagent removal by activated carbon, regrinding and combined depressant on the separation of chalcopyrite and galena. With the utilization of a selective collector called Z-200, a separation test of mixed copper-lead concentrate was conducted. By adopting single-stage roughing, two-stage scavenging, two-stage cleaning, a copper concentrate of containing 21.72% Cu, 7.81% Pb with the copper recovery of 91.28%, and a lead concentrate of containing 62.16% Pb, 0.82% Cu with the lead recovery of 95.24% were obtained.


1998 ◽  
Vol 38 (4-5) ◽  
pp. 29-35 ◽  
Author(s):  
C. J. Banks ◽  
P. N. Humphreys

The stability and operational performance of single stage digestion with and without liquor recycle and two stage digestion were assessed using a mixture of paper and wood as the digestion substrate. Attempts to maintain stable digestion in both single stage reactors were unsuccessful due to the inherently low natural buffering capacity exhibited; this resulted in a rapid souring of the reactor due to unbuffered volatile fatty acid (VFA) accumulation. The use of lime to control pH was unsatisfactory due to interference with the carbonate/bicarbonate equilibrium resulting in wide oscillations in the control parameter. The two stage system overcame the pH stability problems allowing stable operation for a period of 200 days without any requirement for pH control; this was attributed to the rapid flushing of VFA from the first stage reactor into the second stage, where efficient conversion to methane was established. Reactor performance was judged to be satisfactory with the breakdown of 53% of influent volatile solids. It was concluded that the reactor configuration of the two stage system offers the potential for the treatment of cellulosic wastes with a sub-optimal carbon to nitrogen ratio for conventional digestion.


Author(s):  
Anil Kumar ◽  
Virendra Kumar ◽  
PMV Subbarao ◽  
Surendra K Yadav ◽  
Gaurav Singhal

The two-stage ejector has been suggested to replace the single-stage ejector geometrical configuration better to utilize the discharge flow’s redundant momentum to induce secondary flow. In this study, the one-dimensional gas dynamic constant rate of momentum change theory has been utilized to model a two-stage ejector along with a single-stage ejector. The proposed theory has been utilized in the computation of geometry and flow parameters of both the ejectors. The commercial computational fluid dynamics tool ANSYS-Fluent 14.0 has been utilized to predict performance and visualize the flow. The performance in terms of entrainment ratio has been compared under on- design and off-design conditions. The result shows that the two-stage ejector configuration has improved (≈57%) entrainment capacity than the single-stage ejector under the on-design condition.


Author(s):  
Gang Wu ◽  
Bao Jiang ◽  
Lin Zhou ◽  
Ao Wang ◽  
Shaohua Wei

Activated carbon nanoparticles (ANs) were synthesized from coconut shell. ANs show peroxidase and photothermal conversion activities, allowing synergistic cancer treatment via chemodynamic therapy (CDT) and photothermal therapy (PTT).


Sign in / Sign up

Export Citation Format

Share Document