Quantitative analysis of shapes and specific surface area of blasted fragments using image analysis and three-dimensional laser scanning

Author(s):  
Ruize Li ◽  
Wenbo Lu ◽  
Ming Chen ◽  
Gaohui Wang ◽  
Wenjun Xia ◽  
...  
2022 ◽  
Author(s):  
Kainan Li ◽  
Ke Zheng ◽  
Zhifang Zhang ◽  
Kuan Li ◽  
Ziyao Bian ◽  
...  

Abstract Construction of metal selenides with a large specific surface area and a hollow structure is one of the effective methods to improve the electrochemical performance of supercapacitors. However, the nano-material easily agglomerates due to the lack of support, resulting in the loss of electrochemical performance. Herein, we successfully design a three-dimensional graphene (3DG) encapsulation-protected hollow nanoboxes (CoSe2-SnSe2) composite aerogel (3DG/CoSe2-SnSe2) via a co-precipitation method coupled with self-assembly route, followed by a high temperature selenidation strategy. The obtained aerogel possesses porous 3DG conductive network, large specific surface area and plenty of reactive active sites. It could be used as a flexible and binder-free electrode after a facile mechanical compression process, which provided a high specific capacitance of 460 F g-1 at 0.5 A g-1, good rate capability of 212.7 F g-1 at 10 A g-1, and excellent cycle stability due to the fast electron/ion transfer and electrolyte diffusion. With the as-prepared 3DG/CoSe2-SnSe2 as positive electrodes and the AC (activated carbon) as negative electrodes, an asymmetric supercapacitor (3DG/CoSe2-SnSe2//AC) was fabricated, which delivered a high specific capacity of 38 F g-1 at 1A g-1 and an energy density of 11.89 W h kg-1 at 749.9 W kg-1, as well as a capacitance retention of 91.1% after 3000 cycles. This work provides a new method for preparing electrode material.


2012 ◽  
Vol 6 (5) ◽  
pp. 939-951 ◽  
Author(s):  
N. Calonne ◽  
C. Geindreau ◽  
F. Flin ◽  
S. Morin ◽  
B. Lesaffre ◽  
...  

Abstract. We used three-dimensional (3-D) images of snow microstructure to carry out numerical estimations of the full tensor of the intrinsic permeability of snow (K). This study was performed on 35 snow samples, spanning a wide range of seasonal snow types. For several snow samples, a significant anisotropy of permeability was detected and is consistent with that observed for the effective thermal conductivity obtained from the same samples. The anisotropy coefficient, defined as the ratio of the vertical over the horizontal components of K, ranges from 0.74 for a sample of decomposing precipitation particles collected in the field to 1.66 for a depth hoar specimen. Because the permeability is related to a characteristic length, we introduced a dimensionless tensor K*=K/res2, where the equivalent sphere radius of ice grains (res) is computed from the specific surface area of snow (SSA) and the ice density (ρi) as follows: res=3/(SSA×ρi. We define K and K* as the average of the diagonal components of K and K*, respectively. The 35 values of K* were fitted to snow density (ρs) and provide the following regression: K = (3.0 ± 0.3) res2 exp((−0.0130 ± 0.0003)ρs). We noted that the anisotropy of permeability does not affect significantly the proposed equation. This regression curve was applied to several independent datasets from the literature and compared to other existing regression curves or analytical models. The results show that it is probably the best currently available simple relationship linking the average value of permeability, K, to snow density and specific surface area.


2021 ◽  
Vol 45 (1) ◽  
pp. 20210026
Author(s):  
Marisol Salva Ramirez ◽  
J. Carlos Santamarina

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Wei Xiao ◽  
Wenjie Zhou ◽  
Yanhua Zhang ◽  
Liangliang Tian ◽  
Hongdong Liu ◽  
...  

A series of three-dimensional ZnxCd1-xS/reduced graphene oxide (ZnxCd1-xS/RGO) hybrid aerogels was successfully synthesized based on a one-pot hydrothermal approach, which were subsequently used as visible-light-driven photocatalysts for photoreduction of Cr(VI) in water. Over 95% of Cr(VI) was photoreduced by Zn0.5Cd0.5S/RGO aerogel material within 140 min, and such photocatalytic performance was superior to that of other ZnxCd1-xS/RGO aerogel materials (x≠0.5) and bare Zn0.5Cd0.5S. It was assumed that the enhanced photocatalytic activity of Zn0.5Cd0.5S/RGO aerogel was attributed to its high specific surface area and the preferable synergetic catalytic effect between Zn0.5Cd0.5S and RGO. Besides, Zn0.5Cd0.5S/RGO aerogel materials were robust and durable enough so that they could be reused several times with merely limited loss of photocatalytic activity. The chemical composition, phase, structure, and morphology of Zn0.5Cd0.5S/RGO aerogel material were carefully examined by a number of techniques like XRD, SEM, TEM, BET, Raman characterizations, and so on. It was found that Zn0.5Cd0.5S/RGO aerogel possessed hierarchically porous architecture with the specific surface area as high as 260.8 m2 g−1. The Zn0.5Cd0.5S component incorporated in Zn0.5Cd0.5S/RGO aerogel existed in the form of solid solution nanoparticles, which were uniformly distributed in the RGO matrix.


RSC Advances ◽  
2021 ◽  
Vol 11 (22) ◽  
pp. 13446-13457
Author(s):  
Chu Hongtao ◽  
Chen Jiaqi ◽  
Yao Dong ◽  
Yu Miao ◽  
Lin Qing ◽  
...  

Dendritic fiber-type silica (KCC-1) has attracted the attention of researchers because of its unique three-dimensional radial structure and high specific surface area.


2012 ◽  
Vol 6 (2) ◽  
pp. 1157-1180 ◽  
Author(s):  
N. Calonne ◽  
C. Geindreau ◽  
F. Flin ◽  
S. Morin ◽  
B. Lesaffre ◽  
...  

Abstract. We used three-dimensional (3-D) images of snow microstructure to carry out numerical estimations of the full tensor of the intrinsic permeability of snow (K). This study was performed on 35 snow samples, spanning a wide range of seasonal snow types. Because the permeability is related to a characteristic length, we introduced a dimensionless tensor K*=K/ res2, where the equivalent sphere radius of ice grains (res) is computed from the specific surface area of snow (SSA) and the ice density (ρi) as follows: res=3/(SSA x ρi). Values of K*, the average of vertical and horizontal components of K*, were plotted vs. snow density (ρs) and compared to analytical models and data from the literature, showing generally a good agreement. The 35 values of K* were fitted to ρs and provide the following regression: K*=2.94 x exp(–0.013 ρs), with a correlation coefficient of 0.985. This indicates that permeability, if assumed isotropic, can be reasonably determined from SSA and ρs, which are both easily measurable in the field. However, the anisotropy coefficient of K, induced by the snow microstructure, ranges from 0.74 to 1.66 for the samples considered. This behavior is consistent with that of the effective thermal conductivity obtained in a previous work.


Sign in / Sign up

Export Citation Format

Share Document