Role of Bone Marrow Derived Macrophages and Stromal Cells in Irradiation-Induced Pulmonary Fibrosis

Author(s):  
Y. Niu ◽  
M.W. Epperly ◽  
T. Carlos ◽  
X. Zhang ◽  
J.S. Greenberger
2019 ◽  
Vol 39 (6) ◽  
Author(s):  
Tao Qiu ◽  
Jiangqiao Zhou ◽  
Tianyu Wang ◽  
Zhongbao Chen ◽  
Xiaoxiong Ma ◽  
...  

AbstractAcute lung injury (ALI) is an acute inflammatory disease. Leukocyte immunoglobulin-like receptor B4 (LILRB4) is an immunoreceptor tyrosine-based inhibitory motif (ITIM)-bearing inhibitory receptor that is implicated in various pathological processes. However, the function of LILRB4 in ALI remains largely unknown. The aim of the present study was to explore the role of LILRB4 in ALI. LILRB4 knockout mice (LILRB4 KO) were used to construct a model of ALI. Bone marrow cell transplantation was used to identify the cell source of the LILRB4 deficiency-aggravated inflammatory response in ALI. The effect on ALI was analyzed by pathological and molecular analyses. Our results indicated that LILRB4 KO exacerbated ALI triggered by LPS. Additionally, LILRB4 deficiency can enhance lung inflammation. According to the results of our bone marrow transplant model, LILRB4 regulates the occurrence and development of ALI by bone marrow-derived macrophages (BMDMs) rather than by stromal cells in the lung. The observed inflammation was mainly due to BMDM-induced NF-κB signaling. In conclusion, our study demonstrates that LILRB4 deficiency plays a detrimental role in ALI-associated BMDM activation by prompting the NF-κB signal pathway.


2015 ◽  
Vol 39 (10) ◽  
pp. 1099-1110 ◽  
Author(s):  
Iordanis Pelagiadis ◽  
Eftichia Stiakaki ◽  
Christianna Choulaki ◽  
Maria Kalmanti ◽  
Helen Dimitriou

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shun Takao ◽  
Taku Nakashima ◽  
Takeshi Masuda ◽  
Masashi Namba ◽  
Shinjiro Sakamoto ◽  
...  

Abstract Background Mesenchymal stromal cells (MSCs) are a potential therapeutic tool for pulmonary fibrosis. However, ex vivo MSC expansion using serum poses risks of harmful immune responses or unknown pathogen infections in the recipients. Therefore, MSCs cultured in serum-free media (SF-MSCs) are ideal for clinical settings; however, their efficacy in pulmonary fibrosis is unknown. Here, we investigated the effects of SF-MSCs on bleomycin-induced pulmonary inflammation and fibrosis compared to those of MSCs cultured in serum-containing media (S-MSCs). Methods SF-MSCs and S-MSCs were characterized in vitro using RNA sequence analysis. The in vivo kinetics and efficacy of SF-MSC therapy were investigated using a murine model of bleomycin-induced pulmonary fibrosis. For normally distributed data, Student’s t test and one-way repeated measures analysis of variance followed by post hoc Tukey’s test were used for comparison between two groups and multiple groups, respectively. For non-normally distributed data, Kruskal–Wallis and Mann–Whitney U tests were used for comparison between groups, using e Bonferroni’s correction for multiple comparisons. All tests were two-sided, and P < 0.05 was considered statistically significant. Results Serum-free media promoted human bone marrow-derived MSC expansion and improved lung engraftment of intravenously administered MSCs in recipient mice. SF-MSCs inhibited the reduction in serum transforming growth factor-β1 and the increase of interleukin-6 in both the serum and the bronchoalveolar lavage fluid during bleomycin-induced pulmonary fibrosis. SF-MSC administration increased the numbers of regulatory T cells (Tregs) in the blood and lungs more strongly than in S-MSC administration. Furthermore, SF-MSCs demonstrated enhanced antifibrotic effects on bleomycin-induced pulmonary fibrosis, which were diminished by antibody-mediated Treg depletion. Conclusions SF-MSCs significantly suppressed BLM-induced pulmonary inflammation and fibrosis through enhanced induction of Tregs into the lungs and corrected the dysregulated cytokine balance. Therefore, SF-MSCs could be a useful tool for preventing pulmonary fibrosis progression without the demerits of serum use.


Blood ◽  
1994 ◽  
Vol 84 (8) ◽  
pp. 2531-2538 ◽  
Author(s):  
T Agui ◽  
X Xin ◽  
Y Cai ◽  
T Sakai ◽  
K Matsumoto

Abstract Endothelin (ET) produced by endothelial cells has recently been found to be a potent vasoconstricting hormone. In this report, ET is shown to be a potent stimulator of interleukin-6 (IL-6) production by rat bone marrow (BM)-derived stromal cells. It was also shown that ET increased the level of mRNA for IL-6 in these cells. The two types of ET receptor (R), ETAR and ETBR, were shown to be expressed on both BM-derived stromal cells in culture and ex vivo in BM tissue, suggesting that ET works as a physiologic stimulator of IL-6 production in the BM. It was shown that ETAR is coupled to phospholipase C activation, leading to the production of inositol 1,4,5-trisphosphate (IP3) and 1,2- diacylglycerol (DAG) as second messengers in BM-derived stromal cells. This was corroborated by data showing that IL-6 production in these cells was induced by combined stimulation with ionomycin and phorbol myristate acetate, thereby bypassing the effects of IP3 and DAG, respectively. This is the first report on the hormonal regulation of IL- 6 production by BM stromal cells, indicating that hematopoiesis is subject to endocrinologic regulation under physiologic conditions. ET has recently been reported to be produced by macrophages in response to bacterial lipopolysaccharide and human immunodeficiency virus-1 glycoprotein 120. These facts, taken together with our findings, raise the possibility that ET shares the same role of IL-1 as a local cytokine, mediating an intercellular signal between macrophages and BM stromal cells in response to bacterial or viral stimulation.


2016 ◽  
Vol 213 (9) ◽  
pp. 1723-1740 ◽  
Author(s):  
Srdan Verstovsek ◽  
Taghi Manshouri ◽  
Darrell Pilling ◽  
Carlos E. Bueso-Ramos ◽  
Kate J. Newberry ◽  
...  

Primary myelofibrosis (PMF) is a fatal neoplastic disease characterized by clonal myeloproliferation and progressive bone marrow (BM) fibrosis thought to be induced by mesenchymal stromal cells stimulated by overproduced growth factors. However, tissue fibrosis in other diseases is associated with monocyte-derived fibrocytes. Therefore, we sought to determine whether fibrocytes play a role in the induction of BM fibrosis in PMF. In this study, we show that BM from patients with PMF harbors an abundance of clonal, neoplastic collagen- and fibronectin-producing fibrocytes. Immunodeficient mice transplanted with myelofibrosis patients’ BM cells developed a lethal myelofibrosis-like phenotype. Treatment of the xenograft mice with the fibrocyte inhibitor serum amyloid P (SAP; pentraxin-2) significantly prolonged survival and slowed the development of BM fibrosis. Collectively, our data suggest that neoplastic fibrocytes contribute to the induction of BM fibrosis in PMF, and inhibiting fibrocyte differentiation with SAP may interfere with this process.


2017 ◽  
Vol 4 (1-4) ◽  
pp. 15-22
Author(s):  
Lakshmi Kiran Chelluri ◽  
Upasna Upadhyay ◽  
Ravindra Nallagonda ◽  
Sudhir Prasad ◽  
Mohammad Samiuddin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document