Alternating Electric Fields (TTFields) Inhibit Repair of DNA Damage Induced by Ionizing Radiation and Sensitize Glioma and Non-Small Cell Lung Cancer Cells to Radiation

Author(s):  
K. Zielinska-Chomej ◽  
M. Giladi ◽  
A. Tichon ◽  
J. Tu ◽  
R. Schneiderman ◽  
...  
2019 ◽  
Vol 20 (23) ◽  
pp. 6026
Author(s):  
Hwani Ryu ◽  
Hyo Jeong Kim ◽  
Jie-Young Song ◽  
Sang-Gu Hwang ◽  
Jae-Sung Kim ◽  
...  

We previously reported on a poly (ADP-ribose) polymerase (PARP) 1/2 inhibitor N-(3-(hydroxycarbamoyl)phenyl)carboxamide (designated KJ-28d), which increased the death of human ovarian cancer BRCA1-deficient SNU-251 cells. In the present study, we further investigated the antitumor activities of KJ-28d in BRCA-proficient non-small cell lung cancer (NSCLC) cells to expand the use of PARP inhibitors. KJ-28d significantly inhibited the growth of NSCLC cells in vitro and in vivo, and induced DNA damage and reactive oxygen species in A549 and H1299 cells. Combined treatment with KJ-28d and ionizing radiation led to increased DNA damage responses in A549 and H1299 cells compared to KJ-28d or ionizing radiation alone, resulting in apoptotic cell death. Moreover, the combination of KJ-28d plus a DNA-damaging therapeutic agent (carboplatin, cisplatin, paclitaxel, or doxorubicin) synergistically inhibited cell proliferation, compared to either drug alone. Taken together, the findings demonstrate the potential of KJ-28d as an effective anti-cancer therapeutic agent for BRCA-deficient and -proficient cancer cells. KJ-28d might have potential as an adjuvant when used in combination with radiotherapy or DNA-damaging agents, pending further investigations.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 863 ◽  
Author(s):  
Salma El-Shafie ◽  
Sherif Ashraf Fahmy ◽  
Laila Ziko ◽  
Nada Elzahed ◽  
Tamer Shoeib ◽  
...  

Following the discovery of cisplatin over 50 years ago, platinum-based drugs have been a widely used and effective form of cancer therapy, primarily causing cell death by inducing DNA damage and triggering apoptosis. However, the dose-limiting toxicity of these drugs has led to the development of second and third generation platinum-based drugs that maintain the cytotoxicity of cisplatin but have a more acceptable side-effect profile. In addition to the creation of new analogs, tumor delivery systems such as liposome encapsulated platinum drugs have been developed and are currently in clinical trials. In this study, we have created the first PEGylated liposomal form of nedaplatin using thin film hydration. Nedaplatin, the main focus of this study, has been exclusively used in Japan for the treatment of non-small cell lung cancer, head and neck, esophageal, bladder, ovarian and cervical cancer. Here, we investigate the cytotoxic and genotoxic effects of free and liposomal nedaplatin on the human non-small cell lung cancer cell line A549 and human osteosarcoma cell line U2OS. We use a variety of assays including ICP MS and the highly sensitive histone H2AX assay to assess drug internalization and to quantify DNA damage induction. Strikingly, we show that by encapsulating nedaplatin in PEGylated liposomes, the platinum uptake cytotoxicity and genotoxicity of nedaplatin was significantly enhanced in both cancer cell lines. Moreover, the enhanced platinum uptake as well as the cytotoxic/antiproliferative effect of liposomal nedaplatin appears to be selective to cancer cells as it was not observed on two noncancer cell lines. This is the first study to develop PEGylated liposomal nedaplatin and to demonstrate the superior cell delivery potential of this product.


2005 ◽  
Vol 13 (1) ◽  
pp. 74-81 ◽  
Author(s):  
L Zhang ◽  
S Sharma ◽  
J M Hershman ◽  
G A Brent ◽  
S M Dubinett ◽  
...  

2020 ◽  
Vol 15 (4) ◽  
pp. 1934578X2091503
Author(s):  
Sang Hoon Lee ◽  
Ah-Reum Han ◽  
Unwoo Kang ◽  
Jin-Baek Kim ◽  
Eun Kyoung Seo ◽  
...  

Radiation therapy is a very effective tool for the treatment of advanced human lung cancers. However, as one of its malignancy-promoting behaviors, ionizing radiation (IR) increases cell migration and radiation resistance in several lung cancer cells, including non-small cell lung cancer (NSCLC) cells. As part of our ongoing search for potent radiotherapy enhancers from medicinal herbs, a chloroform-soluble fraction of the roots of Angelica dahurica was subjected to phytochemical investigation, leading to the isolation of 8 furanocoumarins. Of these, psoralen (1), xanthotoxin (2), and bergapten (3) inhibited IR-induced migration at a non-cytotoxic concentration (50 μM) in human NSCLC A549 cells. This study is the first to report on the inhibitory activities of these constituents of A. dahurica against IR-induced cancer metastasis.


Sign in / Sign up

Export Citation Format

Share Document