A modified G criterion considering T-stress and differentiating the separation and shear failure in crack propagation

Author(s):  
Zhen Shen ◽  
Hongjun Yu ◽  
Licheng Guo ◽  
Liulei Hao ◽  
Kai Huang
2021 ◽  
Vol 8 (4) ◽  
pp. 153-158
Author(s):  
Min Zhang ◽  
Shaolong Zhang ◽  
Shiwei Shen ◽  
Weilong Zhang

Soil–rock mixture is a special geological material between homogeneous soil masses and fractured rock masses. In this study, the shear characteristics, movement and failure characteristics of particles and the evolution law of cracks were studied by direct shear tests and particle flow numerical simulations. The results show that the shear stress-shear displacement curves of the soil–rock mixture can be roughly classified into three stages: elastic stage, plastic stage and strain softening stage, and there was a "jump" phenomenon. The higher the rock content was, the more obvious the phenomenon. The shear strength and its indices of the soil–rock mixture did not increase with increasing rock content, but there was an "optimal rock content". According to the experimental and simulation results, particle breakage can be divided into three types: slight failure, partial failure and complete failure. The crack propagation characteristics can be divided into three stages, and the crack propagation depth increases with increasing shear displacement. It increases with increasing vertical stress and decreases with increasing block rock content.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Xianjie Hao ◽  
Shaohua Wang ◽  
Duoxiang Jin ◽  
Bo Ren ◽  
Xiangyang Zhang ◽  
...  

The process of crack propagation and tunnel failure is affected by the cross-sectional geometry of an underground tunnel. In order to quantify the effect of section shape on the process of crack propagation in deep tunnels under high ground stress conditions, a total of four physical models with two cross-sectional shapes and twelve stress levels were designed and several large-scale physical model tests were conducted. The results indicated that, when the vertical stress is 4.94 MPa, the length and depth of the cracks generated in the rock surrounding the horseshoe tunnel are about eight times that around a circular tunnel. The position where the circumferential displacement of the horseshoe tunnel begins to be stable is about two, to two and a half, times that around a circular tunnel. After the deep chamber was excavated, continuous spalling was found to occur at the foot of the horseshoe tunnel and microcracks in the surrounding rock were initially generated from the foot of the side wall and then developed upwards to form a conjugate sliding shape to the foot of the arch roof, where the cracks finally coalesced. Discontinuous spalling occurred at the midheight of the side wall of the circular tunnel after excavation, and microcracks in the surrounding rock were initially generated from the midheight of the side wall and then extended concentrically to greater depth in the rock mass surrounding the tunnel. Tensile failure mainly occurred on the surface of the side wall: shear failure mainly appeared in the surrounding rock.


2021 ◽  
Vol 11 (6) ◽  
pp. 2839
Author(s):  
Jiuzhou Huang ◽  
Xin Pan ◽  
Jianxiong Li ◽  
Shiming Dong ◽  
Wen Hua

This paper concerns the effect of friction on crack propagation for the centrally cracked Brazilian disk under diametric forces by using a modified finite element method. It shows that the mode II stress intensity factor decreases obviously with the increase of friction after the crack is closed, while friction has no influence on the stress intensity factor of mode I and T-stress. Meanwhile, there are some significant influences on the crack propagation due to the change of the friction after the crack is closed with the appropriate loading angle and relative length of the crack. When T-stress is positive, the effect of friction becomes obvious and the crack propagation angle increases with a lager friction coefficient. With increasing the friction, the deviation for the crack propagation trajectory increases and the curvature of path decreases, which may lead to the change of crack type. Additionally, the larger relative crack length can amplify the effect of friction, which is similar to the loading angle.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Dong Xu ◽  
Mingshi Gao ◽  
Yongliang He ◽  
Xin Yu

Geological tectonic movements, as well as complex and varying coal-forming conditions, have led to the formation of rock partings in most coal seams. Consequently, the coal in coal-rock composites is characterised by different mechanical properties than those of pure coal. Uniaxial compression tests were performed in this study to determine the mechanical properties and bursting liability of specimens of coal-rock composites (hereinafter referred to as “composites”) with rock partings with different dip angles θ and thicknesses D. The results showed that as θ increased, the failure mode of the composite changed from tensile and splitting failure to slip and shear failure, which was accompanied by a decrease in the brittleness of the composite and an increase in its ductility as well as a decrease in the extent of fragmentation of the coal in the composite. Additionally, as θ increased, the uniaxial compressive strength σu, elastic modulus E, and bursting energy index Ke of the composite decreased. The rock parting in the composite was the key area in which elastic energy accumulated. As D increased, σu, E, and Ke of the composite increased. In addition, as D increased, the ductility of the composite decreased, and the brittleness and extent of coal fragmentation in the composite increased. Notably, the curve for the cumulative acoustic emission (AE) counts of the composite corresponding to the stress-strain curve could be divided into four regimes: pore compaction and closure, a slowly ascending linear elastic section, prepeak steady crack propagation, and peak unsteady crack propagation. The experimental results were used to propose two technologies for controlling the stability of coal-rock composites to effectively ensure safe and efficient production at working faces.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Dawei Yin ◽  
Shaojie Chen ◽  
Xingquan Liu ◽  
Hongfa Ma

The strength and failure characteristics for granite specimen with a set of cross-joints of different lengths were studied using PFC2D software. The results show that when the included angle of α between the main joint and loading direction is 30° or 45°, no matter what the included angle of β between main and secondary joints is, the main joint controls crack propagation and failure of granite specimen, which occurs the shear failure propagating from main joint tips, and the corresponding uniaxial compressive strength is low. Meanwhile, the secondary joint is the key joint for crack propagation and failure at α of 0° and 90° except when β is 90°. The granite specimen occurs the shear failure propagating from secondary joint tips. And, the shear failure crossing upper tips of main and secondary joints is found at α of 0° or 90° and β of 90°. Their uniaxial compressive strengths are large. Also, the combined actions of main and secondary joints determine crack propagation and failure at α of 60° except when β is 90°. The granite specimen occurs the hybrid failure, including shear failure propagating from main joint tips and tensile failure propagating from main and secondary joints center or secondary joint tips. And, when α is 60° and β is 90°, the granite specimen occurs the shear failure along secondary joint plane direction, and its uniaxial compressive strength is small. Generally, when α or β is a fixed value, the uniaxial compressive strength firstly decreases and then increases with the increase of β or α. Additionally, when α is 60° and β>45°, the uniaxial compressive strength represents a decreasing trend. The uniaxial compressive strength at α and β between 30° and 60° is generally small. Finally, the microdisplacement field distributions of granite specimen were discussed.


2020 ◽  
pp. 002199832096705
Author(s):  
Mohammad Tauhiduzzaman ◽  
Leif A Carlsson ◽  
Mustafa O Ayanoglu

Laminate beam theory based design analysis of the sandwich End Notch Flexure (ENF) test specimen is presented. The analysis is specifically considering specimens with honeycomb core, prone to in-plane compression failure of the core, other undesirable failure modes such as face indentation and core shear failure are analyzed. In addition, crack stability and energy dissipation due to frictional sliding between the crack surfaces are analyzed. Parametric analysis of ENF specimens with a range of face and core thickness, is presented to guide the design. In-plane compression failure of the core, but shorten the range of crack lengths were stable growth occurs. A thicker face will also increase the critical load for crack propagation and by so elevate the risk for indentation and core shear failures. Increased core density is beneficial for preventing indentation and core shear failures, but may increase the risk for in-plane compression failure of the core. The thickness of the core does not strongly influence the critical load for crack propagation. A thicker core increases frictional energy loss, but reduces the risk for core shear failure. A thicker core, however, makes the ENF specimen more prone to in-plane compression failure. ENF sandwich specimens with foam and honeycomb core were tested. The test results support the design analysis.


Sign in / Sign up

Export Citation Format

Share Document