Influence of nanostructure morphology on the heat transfer and flow characteristics in nanochannel

2021 ◽  
Vol 165 ◽  
pp. 106927
Author(s):  
Shuting Yao ◽  
Jiansheng Wang ◽  
Xueling Liu
Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 623
Author(s):  
Firas A. Alwawi ◽  
Mohammed Z. Swalmeh ◽  
Amjad S. Qazaq ◽  
Ruwaidiah Idris

The assumptions that form our focus in this study are water or water-ethylene glycol flowing around a horizontal cylinder, containing hybrid nanoparticles, affected by a magnetic force, and under a constant wall temperature, in addition to considering free convection. The Tiwari–Das model is employed to highlight the influence of the nanoparticles volume fraction on the flow characteristics. A numerical approximate technique called the Keller box method is implemented to obtain a solution to the physical model. The effects of some critical parameters related to heat transmission are also graphically examined and analyzed. The increase in the nanoparticle volume fraction increases the heat transfer rate and liquid velocity; the strength of the magnetic field has an adverse effect on liquid velocity, heat transfer, and skin friction. We find that cobalt nanoparticles provide more efficient support for the heat transfer rate of aluminum oxide than aluminum nanoparticles.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Sirine Chtourou ◽  
Hassene Djemel ◽  
Mohamed Kaffel ◽  
Mounir Baccar

AbstractThis study presents a numerical analysis of a laminar counter flow inside small channels plate heat exchanger fitted with Y and C shape obstacles. Using the Computational Fluid Dynamics CFD, an advanced and modern simulation technique, the influence of the geometrical parameters (such as geometry, rib pitch) on the flow characteristics, the thermal and the hydrodynamics performance of the PHE (plate heat exchanger) is investigated numerically. The main goal of this work is to increase the flow turbulence, enhance the heat transfer and the thermal efficiency by inserting new obstacles forms. The computational domain is a conjugate model which is developed by the Computer Aided Design CAD software Solidworks. The results, obtained with Ansys Fluent, show that the presence of the shaped ribs provides enhancement in heat transfer and fluid turbulence. The CFD analysis is validated with the previous study. The non-dimensional factors such as the Nusselt number Nu, the skin friction factor Cf and the thermo-hydraulic performance parameter THPP are predicted with a Reynolds number Re range of 200–800. The temperature and the velocity distribution are presented and analyzed. The Y ribs and the C ribs offer as maximum THPP values respectively about 1.44 and 2.6 times of a smooth duct.


Author(s):  
C. R. Hedlund ◽  
P. M. Ligrani ◽  
H.-K. Moon ◽  
B. Glezer

Heat transfer and fluid mechanics results are given for a swirl chamber whose geometry models an internal passage used to cool the leading edge of a turbine blade. The Reynolds numbers investigated, based on inlet duct characteristics, include values which are the same as in the application (18000–19400). The ratio of absolute air temperature between the inlet and wall of the swirl chamber ranges from 0.62 to 0.86 for the heat transfer measurements. Spatial variations of surface Nusselt numbers along swirl chamber surfaces are measured using infrared thermography in conjunction with thermocouples, energy balances, digital image processing, and in situ calibration procedures. The structure and streamwise development of arrays of Görtler vortex pairs, which develop along concave surfaces, are apparent from flow visualizations. Overall swirl chamber structure is also described from time-averaged surveys of the circumferential component of velocity, total pressure, static pressure, and the circumferential component of vorticity. Important variations of surface Nusselt numbers and time-averaged flow characteristics are present due to arrays of Görtler vortex pairs, especially near each of the two inlets, where Nusselt numbers are highest. Nusselt numbers then decrease and become more spatially uniform along the interior surface of the chamber as the flows advect away from each inlet.


Sign in / Sign up

Export Citation Format

Share Document