scholarly journals A Tumor Cell-Intrinsic Yin-Yang Determining Immune Evasion

Immunity ◽  
2018 ◽  
Vol 49 (1) ◽  
pp. 11-13 ◽  
Author(s):  
Brendan Horton ◽  
Stefani Spranger
Keyword(s):  
2018 ◽  
Vol 2 (1) ◽  
pp. 213-228 ◽  
Author(s):  
Stefani Spranger ◽  
Thomas F. Gajewski
Keyword(s):  

2021 ◽  
Author(s):  
Joyce V. Lee ◽  
Filomena Houseley ◽  
Christina Yau ◽  
Daniel Van de Mark ◽  
Rachel Nakagawa ◽  
...  

For many human cancers, including triple negative breast cancer (TNBC), a modest number of patients benefit from immune checkpoint inhibitors, and few experience cancer remission. Expression of programed death-ligand 1 (PD-L1), tumor immune infiltration, or tumor mutation burden have been widely investigated for predicting cancer immunotherapy response. Whether specific oncogenes diminish response to immunotherapy and whether these effects are reversible remains poorly understood. We predicted that MYC, an oncogene that is frequently overexpressed and is associated with worse prognosis, may predict immunotherapy response in patients with TNBC. Here, we report that MYC-elevated TNBCs are resistant to immune checkpoint inhibitors. Using mouse models of TNBC and patient data we report that MYC signaling is associated with low tumor cell PD-L1, low overall immune cell infiltration, and low tumor cell MHC-I expression. Restoring interferon signaling in the tumor reduces MYC expression and increases MHC-I expression. By combining a TLR9 agonist and an agonistic antibody against OX40 with anti-PD-L1, most mice experience complete tumor regression and are protected from new TNBC tumor outgrowth. Our findings demonstrate that MYC-dependent immune evasion is reversible and druggable, and if strategically targeted, may improve outcomes for patients treated with immune checkpoint inhibitors.


2017 ◽  
Author(s):  
Prudence Donovan ◽  
Olivier A. Dubey ◽  
Susanna Kallioinen ◽  
Katherine W. Rogers ◽  
Katja Muehlethaler ◽  
...  

ABSTRACTThe secreted growth factor Activin-A of the TGFβ family and its receptors can promote or inhibit several cancer hallmarks including tumor cell proliferation and differentiation, vascularization, lymphangiogenesis and inflammation. However, a role in immune evasion and its relationship with tumor-induced muscle wasting and tumor vascularization, and the relative contributions of autocrine versus paracrine Activin signaling remain to be evaluated. To address this, we compared the effects of truncated soluble Activin receptor II B as a ligand trap, or constitutively active mutant type IB receptor versus secreted Activin-A or the related ligand Nodal in mouse and human melanoma cell lines and tumor grafts. We found that while cell-autonomous receptor activation arrested tumor cell proliferation, Activin-A secretion stimulated melanoma cell dedifferentiation and tumor vascularization by functional blood vessels, and it increased primary and metastatic tumor burden and muscle wasting. Importantly, in mice with impaired adaptive immunity, the tumor-promoting effect of Activin-A was lost despite sustained vascularization and cachexia, suggesting that Activin-A promotes melanoma progression by inhibiting anti-tumor immunity. Paracrine Activin-A signaling emerges as a potential target for personalized therapies, both to reduce cachexia and to enhance the efficacy of immunotherapies.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6158
Author(s):  
Jayati Chakrabarti ◽  
Vivien Koh ◽  
Nina Steele ◽  
Jennifer Hawkins ◽  
Yoshiaki Ito ◽  
...  

(1) Background: The expression of programmed death-ligand 1 (PD-L1), which interacts with programmed cell death protein 1 (PD-1) on cytotoxic T lymphocytes (CTLs), enables tumors to escape immunosurveillance. The PD-1/PD-L1 interaction results in the inhibition of CTL proliferation, and effector function, thus promoting tumor cell evasion from immunosurveillance and cancer persistence. Despite 40% of gastric cancer patients exhibiting PD-L1 expression, only a small subset of patients responds to immunotherapy. Human epidermal growth factor receptor2 (HER2) is one of the critical regulators of several solid tumors, including metastatic gastric cancer. Although half of PD-L1-positive gastric tumors co-express HER2, crosstalk between HER2 and PD-1/PD-L1 in gastric cancer remains undetermined. (2) Methods: Human gastric cancer organoids (huTGOs) were generated from biopsied or resected tissues and co-cultured with CTLs and myeloid-derived suppressor cells (MDSCs). Digital Spatial Profiling (DSP) was performed on FFPE tissue microarrays of numerous gastric cancer patients to examine the protein expression of immune markers. (3) Results: Knockdown of HER2 in PD-L1/HER2-positive huTGOs led to a concomitant decrease in PD-L1 expression. Similarly, in huTGOs/immune cell co-cultures, PD-L1 expression decreased in huTGOs and was correlated with an increase in CTL proliferation which enhanced huTGO death. Treatment with Nivolumab exhibited similar effects. However, a combinatorial treatment with Mubritinib and Nivolumab was unable to inhibit HER2 expression in co-cultures containing MDSCs. (4) Conclusions: Our study suggested that co-expression of HER2 and PD-L1 may contribute to tumor cell immune evasion. In addition, autologous organoid/immune cell co-cultures can be exploited to effectively screen responses to a combination of anti-HER2 and immunotherapy to tailor treatment for gastric cancer patients.


2021 ◽  
Author(s):  
Chengyin Min ◽  
Ferdinandos Skoulidis ◽  
Wenrong Zhou ◽  
Jennifer Tsoi ◽  
Alan Huang ◽  
...  

Author(s):  
Carmen Ballesteros Reviriego ◽  
Anneliese O. Speak ◽  
Gemma Turner ◽  
Vivek Iyer ◽  
Leopold Parts ◽  
...  
Keyword(s):  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 5113-5113
Author(s):  
Valentina Rapozzi ◽  
Sara Huerta-Yepez ◽  
Abhijeet Joshi ◽  
Mario I. Vega ◽  
Stavroula Baritaki ◽  
...  

Abstract Abstract 5113 Photodynamic therapy (PDT) is a cancer therapeutic treatment that uses a compound called the “photosensitizer” and a particular type of visible light. When photosensitizers are exposed to a specific wavelength of light (600-800 nm), cytotoxic oxygen species are generated that kill cells (Dougherty, TJ et al., JNCI 90:889, 1998). Several clinical trials are currently underway to evaluate the use of PDT for a variety of cancers. A phase II study has been completed with photodynamic therapy in the treatment of patients with lymphoma or chronic lymphocytic leukemia. (NCT00054171). Recently, we have focused our attention about the properties of the photosensitizer Pheophorbide a (Pba), a chlorine, and its effects on different types of solid tumor cells (Rapozzi, V et al., Cancer Biol Ther 14:1318, 2009). The objective of the present study is to investigate the biochemical and molecular mechanisms by which PDT signals the B-NHL Raji lymphoma cell line (as model) and rendering the cells susceptible to both the cytotoxic mechanism of the tumor microenvironment in vivo or to the response to cytotoxic agents in vitro. We hypothesized that treatment of Raji cells with Pba/PDT in our in vitro system may result in the inhibition of resistance factors that regulate tumor cell responses to both chemotherapeutic and immunotherapeutic drugs. Our recent findings demonstrated that the constitutively overexpressed transcription factor Yin Yang 1 (YY1) regulates, in part, tumor cell resistance in lymphoma (Vega, MI et al., J Immun 175:2174, 2005). Accordingly, we examined whether treatment of Raji lymphoma cells with Pba/PDT will also result in the downregulation of YY1 expression and reverse resistance. The Raji cells were seeded at a cell density of 2×105/ml in Petri dishes. When the cells reached a 70% confluency, they were treated with different concentration (80-160-240 nM) of Pba for three hours in the dark and were then irradiated by an LED light source (640 nm at 12,7 mW for 9 min; 6.7 J/cm2). Following the light treatment, the cells were harvested at different times of incubation (18-36h) to assess apoptosis by the activation of caspase 3 using flow cytometry. In addition, different aliquots of cells were used to prepare slides for immunohistochemistry analyses. The results demonstrate that, indeed, treatment with Pba/PDT resulted in the inhibition of YY1 protein expression in Raji cells. By immunohistochemistry, PDT inhibited the basal nuclear and cytoplasmic expression of YY1 and resulted in weak cytoplasmic YY1 expression. The mechanism of YY1 inhibition might have been the result of PDT-mediated inhibition of NF-κB activity (Karmakar, S. et al., Neurosci lett 415: 242, 2007) since YY1 is transcriptionally regulated by NF-κB (Wang, H et al., Mol Cell Biol 67:4374, 2007). In addition, our preliminary findings demonstrate that treatment of drug-resistant tumor cells with PDT sensitizes the cells to drug-induced apoptosis. Overall, the data suggest that YY1 may be considered as a novel therapeutic target in PDT. Based on the findings here, we are currently examining the role of PDT in the dysregulation of the NF-κB/YY1/Snail/RKIP loop (Wu, K and Bonavida, B. Crit Rev Immun 29:241, 2009) that regulates cell survival and proliferation and resistance in lymphoma. (We acknowledge Doctors Oscar Stafsudd and Romaine Saxton for their assistance.) Disclosures: No relevant conflicts of interest to declare.


2001 ◽  
Vol 49 (11) ◽  
pp. 621-628 ◽  
Author(s):  
L. M. Real ◽  
P. Jimenez ◽  
A. Kirkin ◽  
A. Serrano ◽  
A. García ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document