scholarly journals Repurposing FDA-approved drugs to fight COVID-19 using in silico methods: Targeting SARS-CoV-2 RdRp enzyme and host cell receptors (ACE2, CD147) through virtual screening and molecular dynamic simulations

2021 ◽  
Vol 23 ◽  
pp. 100541
Author(s):  
Soodeh Mahdian ◽  
Mahboobeh Zarrabi ◽  
Yunes Panahi ◽  
Somayyeh Dabbagh
Author(s):  
Chiara Luise ◽  
Dina Robaa ◽  
Wolfgang Sippl

AbstractSome of the main challenges faced in drug discovery are pocket flexibility and binding mode prediction. In this work, we explored the aromatic cage flexibility of the histone methyllysine reader protein Spindlin1 and its impact on binding mode prediction by means of in silico approaches. We first investigated the Spindlin1 aromatic cage plasticity by analyzing the available crystal structures and through molecular dynamic simulations. Then we assessed the ability of rigid docking and flexible docking to rightly reproduce the binding mode of a known ligand into Spindlin1, as an example of a reader protein displaying flexibility in the binding pocket. The ability of induced fit docking was further probed to test if the right ligand binding mode could be obtained through flexible docking regardless of the initial protein conformation. Finally, the stability of generated docking poses was verified by molecular dynamic simulations. Accurate binding mode prediction was obtained showing that the herein reported approach is a highly promising combination of in silico methods able to rightly predict the binding mode of small molecule ligands in flexible binding pockets, such as those observed in some reader proteins.


2021 ◽  
Vol 13 (9) ◽  
pp. 769-784
Author(s):  
Tao Lu ◽  
Yi Liu ◽  
Yan Liu ◽  
Hao Chen ◽  
Chengang Han ◽  
...  

Aim: Butyrylcholinesterase (BChE) is a crucial therapeutic target because it is associated with multiple pathological elements of Alzheimer’s disease (AD). An integrated computational strategy was employed to exploit effective BChE inhibitors. Methods & results: Ten compounds derived from the Enamine database by structure-based pharmacophore virtual screening were further evaluated for biological activity; out of the ten, only five had an IC50 of less than 100 μM. Among these five compounds, a new molecule, 970180, presented the most potency against BChE, with an IC50 of 4.24 ± 0.16 μM, and acted as a mixed-type inhibitor. Molecular dynamic simulations and absorption, distribution, metabolism and excretion prediction further confirmed its high potential as a good candidate of BChE inhibitor. Furthermore, cytotoxicity of molecule 970180 was not observed at concentrations up to 50 μM, and the molecule also showed a prominent neuroprotective effect compared with tacrine at 25 and 50 μM. Conclusion: This study provides an effective structure-based pharmacophore virtual screening method to discover BChE inhibitors and provide new choices for the development of BChE inhibitors, which may be beneficial for AD patients.


Sign in / Sign up

Export Citation Format

Share Document