State-of-the-art of the Jatropha curcas productive chain: From sowing to biodiesel and by-products

2013 ◽  
Vol 42 ◽  
pp. 202-215 ◽  
Author(s):  
Nicla Contran ◽  
Laura Chessa ◽  
Marcello Lubino ◽  
Davide Bellavite ◽  
Pier Paolo Roggero ◽  
...  
Author(s):  
Rita C. Alves ◽  
Francisca Rodrigues ◽  
Maria Antónia Nunes ◽  
Ana F. Vinha ◽  
M. Beatriz P.P. Oliveira
Keyword(s):  

2019 ◽  
Vol 27 (1) ◽  
pp. 52-59 ◽  
Author(s):  
David Bozsaky

Abstract In the 21st century, global climate change and the high level of fossil energy consumption have introduced changes affecting all sectors of the economy, including the building industry. Reducing energy consumption has become an important task for engineers because 30% of the total energy consumption is used for heating our buildings. Recycling the huge amount of industrial and agricultural by-products has also become urgent because due to their CO2 emissions, their combustion is not a state-of-the-art alternative. Besides rediscovering some long-known, nature-based insulating materials, there are also several research projects that have resulted in new products. In the last century it was relatively easy to review this product range, but nowadays there are so many kinds of nature-based thermal insulating products, there is a need for systematization, and more in-depth knowledge about them is required. The purpose of this paper is to develop a new systematization of nature-based thermal insulation materials, summarize the main knowledge about them, and indicate the direction of recent research and development.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1526
Author(s):  
Gudla Amulya ◽  
Arif Ali Baig Moghal ◽  
Abdullah Almajed

The increase in infrastructure requirement drives people to use all types of soils, including poor soils. These poor soils, which are weak at construction, must be improved using different techniques. The extinction of natural resources and the increase in cost of available materials require us to think of alternate resources. The usage of industry by-products and related methods for improving the properties of different soils has been studied for several years. Granite dust is an industrial by-product originating from the primary crushing of aggregates. The production of huge quantities of granite dust in the industry causes severe problems from the handling to the disposal stage. Accordingly, in the civil engineering field, the massive utilization of granite dust has been proposed for various applications to resolve these issues. In this context, the present review provides precise and valuable content on granite dust characterization, its effect as a stabilizer on the behavior of different soils, and its interaction mechanisms. The efficacy of the granite dust in replacing sand in concrete is explored followed by its ability to improve the geotechnical characteristics of clays of varying plasticity are explored. The review is even extended to study the effect of binary stabilization on clays with granite dust in the presence of calcium-based binders. The practical limitations encountered and its efficiency over other stabilizers are also assessed. This review is further extended to analyze the effect of the granite dust dosage for various field applications.


2013 ◽  
Vol 7 (1) ◽  
pp. 27-42

MX (3-Chloro-4-(Dichloromethyl)-5-Hydroxy-2(5H)-Furanone) and NDMA (N,N-dimethyl-Nnitrosoamine) are disinfection by-products, which are formed during NOM’s and other water containing precursors reaction with chlorine. Both, due to their potential carcinogenic and mutagenic properties were placed on the list of potentially health hazardous disinfection byproducts. Both of the compounds occur in drinking water at the ppt level. An extensive review of international literature was the background of the presentation of state of the art concerns on MX and NDMA analysis.


2019 ◽  
Vol 8 (4) ◽  
pp. 6281-6287 ◽  

The world continues to search for renewable energy resources, due to the devastating effect of global warming and the dwindling resources of fossil fuels. Without needing much modifications to the existing diesel engines, biodiesel is regarded as one of the most promising ways to treat these two issues simultaneously. However, the production of biodiesel is always associated with a higher cost compared to its counterpart; the petroleum-derived diesel. In addition, the type of feedstock used in the production of biodiesel also has also become a big concern due to the never-ending fuel vs food debate. Jatropha curcas is a second generation feedstock which can be specifically grown to avoid the usage of edible oils as feedstock to produce fuel. In this paper, the energy saving potential of using elite Jatropha curcas hybrid for biodiesel production in Malaysia are evaluated by conducting a full chain energy analysis. It was found that the new hybrid consumed 25.32 MJ of energy in order to produce 1kg of biodiesel. The net energy balance (NEB) and net energy ratio (NER) when by-products are not utilized are found to be 15.89 MJ/kg and 1.63, respectively. However, the NEB and NER increase to 26.72 MJ/kg and 2.84 when the by-products are used in the biodiesel conversion process. Hence, this new hybrid of Jatropha curcas has a huge potential to be used for the production of biodiesel.


2014 ◽  
Vol 68 (9) ◽  
Author(s):  
Asier Aranzabal ◽  
Beñat Pereda-Ayo ◽  
M. González-Marcos ◽  
José González-Marcos ◽  
Rubén López-Fonseca ◽  
...  

AbstractChlorine-containing organic compounds (Cl-VOC) require special attention due to their distinct toxicity, high stability and persistence in the environment. Removal of Cl-VOC by catalytic oxidation over a wide variety of catalysts has been presented in literature. This paper reviews the state of the art in this subject, including different model compounds, nature of catalysts, and oxidation activity. Catalyst selectivity (CO2 vs. CO and HCl vs. Cl2), by-products formation and the causes of deactivation are also analyzed as the most important factors in the catalyst selection for practical applications.


Sign in / Sign up

Export Citation Format

Share Document