CURRENT STATE-OF-THE-ART OF FOOD PROCESSING BY-PRODUCTS K ASI M URUGA N, V ICTOR SI MON CH A NDR ASEK ARAN, P. K A RTHIK EYA N, A ND SA LEH A LSOH A IBA NI

Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 82
Author(s):  
Otilia Carvalho ◽  
Maria N. Charalambides ◽  
Ilija Djekić ◽  
Christos Athanassiou ◽  
Serafim Bakalis ◽  
...  

In recent years, modelling techniques have become more frequently adopted in the field of food processing, especially for cereal-based products, which are among the most consumed foods in the world. Predictive models and simulations make it possible to explore new approaches and optimize proceedings, potentially helping companies reduce costs and limit carbon emissions. Nevertheless, as the different phases of the food processing chain are highly specialized, advances in modelling are often unknown outside of a single domain, and models rarely take into account more than one step. This paper introduces the first high-level overview of modelling techniques employed in different parts of the cereal supply chain, from farming to storage, from drying to milling, from processing to consumption. This review, issued from a networking project including researchers from over 30 different countries, aims at presenting the current state of the art in each domain, showing common trends and synergies, to finally suggest promising future venues for research.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1383 ◽  
Author(s):  
Annalisa Tassoni ◽  
Tullia Tedeschi ◽  
Chiara Zurlini ◽  
Ilaria Maria Cigognini ◽  
Janos-Istvan Petrusan ◽  
...  

The world is confronted with the depletion of natural resources due to their unsustainable use and the increasing size of populations. In this context, the efficient use of by-products, residues and wastes generated from agro-industrial and food processing opens the perspective for a wide range of benefits. In particular, legume residues are produced yearly in very large amounts and may represent an interesting source of plant proteins that contribute to satisfying the steadily increasing global protein demand. Innovative biorefinery extraction cascades may also enable the recovery of further bioactive molecules and fibers from these insufficiently tapped biomass streams. This review article gives a summary of the potential for the valorization of legume residual streams resulting from agro-industrial processing and more particularly for pea, green bean and chickpea by-products/wastes. Valuable information on the annual production volumes, geographical origin and state-of-the-art technologies for the extraction of proteins, fibers and other bioactive molecules from this source of biomass, is exhaustively listed and discussed. Finally, promising applications, already using the recovered fractions from pea, bean and chickpea residues for the formulation of feed, food, cosmetic and packaging products, are listed and discussed.


1995 ◽  
Vol 38 (5) ◽  
pp. 1126-1142 ◽  
Author(s):  
Jeffrey W. Gilger

This paper is an introduction to behavioral genetics for researchers and practioners in language development and disorders. The specific aims are to illustrate some essential concepts and to show how behavioral genetic research can be applied to the language sciences. Past genetic research on language-related traits has tended to focus on simple etiology (i.e., the heritability or familiality of language skills). The current state of the art, however, suggests that great promise lies in addressing more complex questions through behavioral genetic paradigms. In terms of future goals it is suggested that: (a) more behavioral genetic work of all types should be done—including replications and expansions of preliminary studies already in print; (b) work should focus on fine-grained, theory-based phenotypes with research designs that can address complex questions in language development; and (c) work in this area should utilize a variety of samples and methods (e.g., twin and family samples, heritability and segregation analyses, linkage and association tests, etc.).


1976 ◽  
Vol 21 (7) ◽  
pp. 497-498
Author(s):  
STANLEY GRAND

10.37236/24 ◽  
2002 ◽  
Vol 1000 ◽  
Author(s):  
A. Di Bucchianico ◽  
D. Loeb

We survey the mathematical literature on umbral calculus (otherwise known as the calculus of finite differences) from its roots in the 19th century (and earlier) as a set of “magic rules” for lowering and raising indices, through its rebirth in the 1970’s as Rota’s school set it on a firm logical foundation using operator methods, to the current state of the art with numerous generalizations and applications. The survey itself is complemented by a fairly complete bibliography (over 500 references) which we expect to update regularly.


2009 ◽  
Vol 5 (4) ◽  
pp. 359-366 ◽  
Author(s):  
Osvaldo Santos-Filho ◽  
Anton Hopfinger ◽  
Artem Cherkasov ◽  
Ricardo de Alencastro

Author(s):  
Florian Kuisat ◽  
Fernando Lasagni ◽  
Andrés Fabián Lasagni

AbstractIt is well known that the surface topography of a part can affect its mechanical performance, which is typical in additive manufacturing. In this context, we report about the surface modification of additive manufactured components made of Titanium 64 (Ti64) and Scalmalloy®, using a pulsed laser, with the aim of reducing their surface roughness. In our experiments, a nanosecond-pulsed infrared laser source with variable pulse durations between 8 and 200 ns was applied. The impact of varying a large number of parameters on the surface quality of the smoothed areas was investigated. The results demonstrated a reduction of surface roughness Sa by more than 80% for Titanium 64 and by 65% for Scalmalloy® samples. This allows to extend the applicability of additive manufactured components beyond the current state of the art and break new ground for the application in various industrial applications such as in aerospace.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yangfan Xu ◽  
Xianqun Fan ◽  
Yang Hu

AbstractEnzyme-catalyzed proximity labeling (PL) combined with mass spectrometry (MS) has emerged as a revolutionary approach to reveal the protein-protein interaction networks, dissect complex biological processes, and characterize the subcellular proteome in a more physiological setting than before. The enzymatic tags are being upgraded to improve temporal and spatial resolution and obtain faster catalytic dynamics and higher catalytic efficiency. In vivo application of PL integrated with other state of the art techniques has recently been adapted in live animals and plants, allowing questions to be addressed that were previously inaccessible. It is timely to summarize the current state of PL-dependent interactome studies and their potential applications. We will focus on in vivo uses of newer versions of PL and highlight critical considerations for successful in vivo PL experiments that will provide novel insights into the protein interactome in the context of human diseases.


Sign in / Sign up

Export Citation Format

Share Document