scholarly journals Nematotoxic and phytotoxic activity of Satureja montana and Ruta graveolens essential oils on Pinus pinaster shoot cultures and P. pinaster with Bursaphelenchus xylophilus in vitro co-cultures

2015 ◽  
Vol 77 ◽  
pp. 59-65 ◽  
Author(s):  
Jorge M.S. Faria ◽  
Inês Sena ◽  
Cristina Moiteiro ◽  
Richard N. Bennett ◽  
Manuel Mota ◽  
...  
Planta ◽  
2015 ◽  
Vol 241 (6) ◽  
pp. 1325-1336 ◽  
Author(s):  
Jorge M. S. Faria ◽  
Inês Sena ◽  
Inês Vieira da Silva ◽  
Bruno Ribeiro ◽  
Pedro Barbosa ◽  
...  

Toxins ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 142 ◽  
Author(s):  
Marta García-Díaz ◽  
Jessica Gil-Serna ◽  
Belén Patiño ◽  
Esther García-Cela ◽  
Naresh Magan ◽  
...  

Aflatoxin contamination of foodstuffs poses a serious risk to food security, and it is essential to search for new control methods to prevent these toxins entering the food chain. Several essential oils are able to reduce the growth and mycotoxin biosynthesis of toxigenic species, although their efficiency is strongly influenced by the environmental conditions. In this work, the effectiveness of Satureja montana and Origanum virens essential oils to control Aspergillus flavus growth was evaluated under three water activity levels (0.94, 0.96 and 0.98 aw) using a Bioscreen C, a rapid in vitro spectrophotometric technique. The aflatoxin concentrations at all conditions tested were determined by HPLC-FLD. Aspergillus flavus growth was delayed by both essential oil treatments. However, only S. montana essential oil was able to significantly affect aflatoxin production, although the inhibition percentages widely differed among water activities. The most significant reduction was observed at 0.96 aw, which is coincident with the conditions in which A. flavus reached the highest levels of aflatoxin production. On the contrary, the treatment with S. montana essential oil was not effective in significantly reducing aflatoxin production at 0.94 aw. Therefore, it is important to study the interaction of the new control compounds with environmental factors before their application in food matrices, and in vitro ecophysiological studies are a good option since they provide accurate and rapid results.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1460
Author(s):  
Zorana Kovačević ◽  
Nebojša Kladar ◽  
Ivana Čabarkapa ◽  
Miodrag Radinović ◽  
Milan Maletić ◽  
...  

Mastitis represents a heavy burden for the dairy sector worldwide with high economic and animal welfare impact. Antibiotic treatment is an important component of mastitis control programs. However, emergence and transfer of antimicrobial-resistant (AMR) bacteria is becoming a growing concern. Therefore, the development of novel agents is required for prevention and treatment of mastitis. Hence, our aim was to assess the antibacterial properties of two essential oils (EOs) obtained from oregano (Origanum vulgare L., Lamiaceae) and mountain savory (Satureja montana L., Lamiaceae) against mastitis-associated bacteria in Serbia. The chemical composition and antioxidant potential of these EOs were also evaluated. The present study was conducted on strains derived from aseptic milk samples collected from Holstein-Friesian cows with clinical or subclinical mastitis, during the morning milking. Clinical mastitis was assessed by clinical examination, while subclinical mastitis was confirmed using somatic cell count in the milk samples. The microdilution method was used to determine the antibacterial activity, while antioxidant potential of the EOs was evaluated in several in vitro assays. The values of minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) were used to quantitatively measure the antibacterial activity of each EO. MIC/MBC ranged from 0.78/6.25 and 0.39/0.78 mg/mL for oregano and mountain savory, respectively. A total of 25 compounds were identified in the oregano EO, while 47 were identified in winter savory EO, among which aromatic oxygenated monoterpenes were the most abundant compounds. The tested EOs have shown promising antimicrobial activity and could be considered as one of the treatment approaches in mastitis-affected cows.


Food Control ◽  
2019 ◽  
Vol 100 ◽  
pp. 247-256 ◽  
Author(s):  
Bojana Vasilijević ◽  
Dragana Mitić-Ćulafić ◽  
Ilija Djekic ◽  
Tatjana Marković ◽  
Jelena Knežević-Vukčević ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2576 ◽  
Author(s):  
Teresa Della Pepa ◽  
Hazem S. Elshafie ◽  
Raffaele Capasso ◽  
Vincenzo De Feo ◽  
Ippolito Camele ◽  
...  

There is a growing interest in a potential use of essential oils (EOs) as a replacement for traditional pesticides and herbicides. The aims of this study were to: (i) Identify the chemical composition of the two EOs derived from Origanum heracleoticum L. and O. majorana L., (ii) evaluate the in vitro antifungal activity of the EOs against some postharvest phytopathogens (Botrytis cinerea, Penicillium expansum, Aspergillus niger and Monilinia fructicola), (iii) evaluate the in vitro antibacterial activity against Bacillus megaterium, Clavibacter michiganensis, Xanthomonas campestris, Pseudomonas fluorescens and P. syringae pv. phaseolicola, (iv) evaluate the effect of both studied EOs on the spore germination percentage and their minimum inhibitory concentration (MIC) against M. fructicola, and (v) study the possible phytotoxicity of the two EOs and their major constituents, carvacrol for O. heracleoticum and terpinen-4-ol for O. majorana, against tha germination and initial radicle growth of radish, lettuce, garden cress and tomato. The two EOs demonstrated promising in vitro antimicrobial and antifungal activities against all tested microorganisms. EOs showed high inhibition of spore germination percentage at the minimal inhibitory concentration of 500 and 2000 µg/mL, respectively. Moreover, both germination and radical elongation of selected plant species were sensitive to the oils.


2018 ◽  
Vol 13 (10) ◽  
pp. 1934578X1801301 ◽  
Author(s):  
Lucia Caputo ◽  
Mariarosa Trotta ◽  
Angelica Romaniello ◽  
Vincenzo De Feo

In this study we determined the chemical composition of R. officinalis essential oil and evaluated its possible phytotoxic activity. The chemical composition of the essential oil was studied by GC and GC-MS analyses. A total of 57 compounds were identified and the main components are α-pinene (24.9%), verbenol (8.5%), verbenone (8.5%), 1,8-cineol (8.2%) and isoborneol (8.1%). Moreover, the essential oil and its main constituents, α-pinene and 1,8-cineol, were evaluated for their possible in vitro phytotoxic activity against germination and initial radical growth of radish ( Raphanus sativus L.), rue ( Ruta graveolens L.), lettuce ( Lactuca sativa L.) and tomato ( Solanum lycopersicum L.). The results showed thatboth germination and radical elongation were sensitive to the oil but not in the same way to α-pinene and 1,8-cineol. The oil influences in different ways radical elongation of R. sativus, R. graveolens, and L. sativa and the germination of S. lycopersicum. Instead α-pinene influenced only radical elongation of lettuce.


2011 ◽  
Vol 6 (11) ◽  
pp. 1934578X1100601 ◽  
Author(s):  
Aurelio Marandino ◽  
Laura De Martino ◽  
Emilia Mancini ◽  
Luigi Milella ◽  
Vincenzo De Feo

The essential oils of Hypericum perforatum, H. perfoliatum and H. hircinum, growing in Southern Italy, were analyzed by GC and GC/MS. In the three oils, 111 compounds in all were identified: 53 for the oil of H. hircinum (93.7% of the total oil), 55 for H. perforatum (96.5% of the total oil) and 63 for H. perfoliatum (98.7% of the total oil). The major fraction of the essential oils of H. perforatum and H. hircinum was represented by sesquiterpene hydrocarbons, while the monoterpene α-pinene, and the phenol thymol were the most abundant compounds in the essential oil of H. perfoliatum. The oils were evaluated for their potential in vitro phytotoxic activity against germination and early radicle elongation of Raphanus sativus and Lepidium sativum. The germination of this latter was significantly inhibited by the essential oil of H. hircinum, at the highest doses tested, whereas radicle elongation of garden cress was significantly inhibited by the essential oils of H. perfoliatum and H. hircinum. The radicle elongation of radish was inhibited by the essential oil of H. hircinum to a major extent and by H. perforatum and perfoliatum in a minor measure.


2012 ◽  
Vol 7 (12) ◽  
pp. 1934578X1200701 ◽  
Author(s):  
Prabodh Satyal ◽  
Prajwal Paudel ◽  
Ananad Kafle ◽  
Suraj K. Pokharel ◽  
Bimala Lamichhane ◽  
...  

The essential oils from the leaves of Artemisia dubia, A. indica, and A. vulgaris growing wild in Nepal were obtained by hydrodistillation and analyzed by GC-MS. The major components in A. dubia oil were chrysanthenone (29.0%), coumarin (18.3%), and camphor (16.4%). A. indica oil was dominated by ascaridole (15.4%), isoascaridole (9.9%), trans-p-mentha-2,8-dien-1-ol (9.7%), and trans-verbenol (8.4%). The essential oil of Nepalese A. vulgaris was rich in α-thujone (30.5%), 1,8-cineole (12.4%), and camphor (10.3%). The essential oils were screened for phytotoxic activity against Lactuca sativa (lettuce) and Lolium perenne (perennial ryegrass) using both seed germination and seedling growth, and all three Artemisia oils exhibited notable allelopathic activity. A. dubia oil showed in-vitro cytotoxic activity on MCF-7 cells (100% kill at 100 μg/mL) and was also marginally antifungal against Aspergillus niger (MIC = 313 μg/mL). DFT calculations (B3LYP/6-31G*) revealed thermal decomposition of ascaridole to be energetically accessible at hydrodistillation and GC conditions, but these are spin-forbidden processes. If decomposition does occur, it likely proceeds by way of homolytic peroxide bond cleavage rather than retro-Diels-Alder elimination of molecular oxygen.


Sign in / Sign up

Export Citation Format

Share Document