Microencapsulation of Mentha spicata essential oil by spray drying: Optimization, characterization, release kinetics of essential oil from microcapsules in food models

2020 ◽  
Vol 154 ◽  
pp. 112694 ◽  
Author(s):  
Mehdi Mehran ◽  
Saeed Masoum ◽  
Mohammadreza Memarzadeh
RSC Advances ◽  
2018 ◽  
Vol 8 (52) ◽  
pp. 29980-29987 ◽  
Author(s):  
Yan-hong Yang ◽  
Xiang-zhou Li ◽  
Sheng Zhang

LCEO microcapsules were prepared by various preparation methods such as grinding, saturated solution, freeze-drying, spray-drying with β-CD used as the wall material. Avrami's model was used to simulate the release rates of microcapsules.


2022 ◽  
Vol 125 ◽  
pp. 107430
Author(s):  
Jelena Bajac ◽  
Branislava Nikolovski ◽  
Ivana Lončarević ◽  
Jovana Petrović ◽  
Branimir Bajac ◽  
...  

2019 ◽  
Vol 116 ◽  
pp. 1010-1019 ◽  
Author(s):  
Stefani Cortés-Camargo ◽  
Pedro Estanislao Acuña-Avila ◽  
María Eva Rodríguez-Huezo ◽  
Angélica Román-Guerrero ◽  
Victor Varela-Guerrero ◽  
...  

Antibiotics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 443 ◽  
Author(s):  
Ângelo Luís ◽  
Eugenia Gallardo ◽  
Ana Ramos ◽  
Fernanda Domingues

Active packaging incorporating antioxidants and antimicrobials is creating a niche in the market and becoming increasingly important. The main goal of this work was the design of bioactive bilayer films (zein/pullulan) incorporating licorice essential oil. The bilayer films were fully characterized in terms of their chemical, physical, barrier, antioxidant, and antimicrobial properties. Furthermore, the release kinetics of isopropyl palmitate, the major compound of the licorice essential oil, was evaluated by HPLC-DAD (high-performance liquid chromatography coupled to diode-array detector). Scanning Electron Microscopy (SEM) micrographs of cross-sections of the bilayer films clearly show the two layers of the films. Besides presenting the capacity to scavenge free radicals and to inhibit the lipid peroxidation, the developed bilayer films were also able to inhibit the growth of known foodborne pathogens (Enterococcus faecalis and Listeria monocytogenes). The release kinetics profile of isopropyl palmitate from bilayer films incorporating licorice essential oil demonstrated that in 50% ethanol at room temperature, the release was more effective, suggesting that the bilayer films will be more efficient if applied to package semi-fatty food.


2014 ◽  
Vol 22 (2) ◽  
pp. 171-176
Author(s):  
Kan WANG ◽  
Zifang WANG ◽  
Ming GAO ◽  
Yaohua HUANG ◽  
Xiaofei HAN ◽  
...  

2021 ◽  
Vol 2 ◽  
pp. 100077
Author(s):  
Sudipta Das ◽  
Arnab Samanta ◽  
Shouvik Mondal ◽  
Debatri Roy ◽  
Amit Kumar Nayak

2021 ◽  
Vol 55 (6) ◽  
pp. 3676-3685
Author(s):  
Yu Wang ◽  
Fang Wang ◽  
Leilei Xiang ◽  
Chenggang Gu ◽  
Marc Redmile-Gordon ◽  
...  

Author(s):  
Lorenzo Lisuzzo ◽  
Giuseppe Cavallaro ◽  
Stefana Milioto ◽  
Giuseppe Lazzara

AbstractIn this work, we investigated the effects of the vacuum pumping on both the loading efficiencies and the release kinetics of halloysite nanotubes filled with drug molecules dissolved in ethanol. As model drugs, salicylic acid and sodium diclofenac were selected. For comparison, the loading of the drug molecules was conducted on platy kaolinite to explore the key role of the hollow tubular morphology on the filling mechanism of halloysite. The effects of the pressure conditions used in the loading protocol were interpreted and discussed on the basis of the thermodynamic results provided by Knudsen thermogravimetry, which demonstrated the ethanol confinement inside the halloysite cavity. Several techniques (TEM, FTIR spectroscopy, DLS and $$\zeta$$ ζ -potential experiments) were employed to characterize the drug filled nanoclays. Besides, release kinetics of the drugs were studied and interpreted according to the loading mechanism. This work represents a further step for the development of nanotubular carriers with tunable release feature based on the loading protocol and drug localization into the carrier. Graphic abstract The filling efficiency of halloysite nanotubes is enhanced by the reduction of the pressure conditions used in the loading protocol.


Sign in / Sign up

Export Citation Format

Share Document