A comparative study of direct laser ablation and laser-induced plasma-assisted ablation on glass surface

2021 ◽  
pp. 103737
Author(s):  
Yani Xia ◽  
Xiubing Jing ◽  
Dawei Zhang ◽  
Fujun Wang ◽  
Syed Husain Imran Jaffery ◽  
...  
Author(s):  
Ishan Saxena ◽  
Kornel Ehmann

Presently surface micro-texturing has found many promising applications in the fields of tribology, bio-medical engineering, metal cutting, and other functional or topographical surfaces. Most of these applications are material-specific, which necessitates the need for a texturing and machining process that surpasses the limitations posed by a certain class of materials that are difficult to process by laser ablation, owing to their optical or other surface or bulk characteristics. Laser Induced Plasma Micromachining (LIPMM) has emerged as a promising alternative to direct laser ablation for micro-machining and micro-texturing, which offers superior machining characteristics while preserving the resolution, accuracy and tool-less nature of laser ablation. This study is aimed at understanding the capability of LIPMM process to address some of the issues faced by pulsed laser ablation in material processing. This paper experimentally demonstrates machining of optically transmissive, reflective and rough surface materials using LIPMM. Apart from this, the study includes machining of conventional metals (Nickel and Titanium) and polymer (Polyimide), to demonstrate higher obtainable depth and reduced heat affected distortion around micro-features machined by LIPMM, as compared to laser ablation.


2014 ◽  
Vol 2 (3) ◽  
Author(s):  
Ishan Saxena ◽  
Kornel F. Ehmann

Presently surface microtexturing has found many promising applications in the fields of tribology, biomedical engineering, metal cutting, and other functional or topographical surfaces. Most of these applications are material-specific, which necessitates the need for a texturing and machining process that surpasses the limitations posed by a certain class of materials that are difficult to process by laser ablation, owing to their optical or other surface or bulk characteristics. Laser induced plasma micromachining (LIPMM) has emerged as a promising alternative to direct laser ablation for micromachining and microtexturing, which offers superior machining characteristics while preserving the resolution, accuracy and tool-less nature of laser ablation. This study is aimed at understanding the capability of LIPMM process to address some of the issues faced by pulsed laser ablation in material processing. This paper experimentally demonstrates machining of optically transmissive, reflective, and rough surface materials using LIPMM. Apart from this, the study includes machining of conventional metals (nickel and titanium) and polymer (polyimide), to demonstrate higher obtainable depth and reduced heat-affected distortion around microfeatures machined by LIPMM, as compared to laser ablation.


2020 ◽  
Vol 8 (2) ◽  
Author(s):  
Suman Bhandari ◽  
Nicolas Martinez-Prieto ◽  
Jian Cao ◽  
Kornel Ehmann

Abstract The increase in the usage of titanium alloys for micro-engineering applications has driven the demand for improved micromanufacturing processes. Laser-based microfabrication processes such as direct laser ablation (DLA), laser-induced plasma micromachining (LIPMM), and magnetically controlled laser-induced plasma micromachining (MC-LIPMM) are promising technologies to fill this technological gap. In this paper, we evaluate microchannels fabricated in Ti6Al4V substrates using laser ablation, LIPMM, and MC-LIPMM. Scanning electron microscope (SEM) images and 3D scans of the channels were used to compare the surface morphology and channel geometry for different feed rates and number of laser passes. Wall angle measurements show that the LIPMM processes yield channels with steeper walls and smoother walls in comparison with the channels fabricated using direct ablation. The clear morphological differences on the surface finish of the walls made by direct ablation and using laser-induced plasmas hint at the differences in material removal mechanisms between these manufacturing methods.


2019 ◽  
Vol 18 (03n04) ◽  
pp. 1940048
Author(s):  
N. Tarasenko ◽  
V. Kiris ◽  
N. Tarasenka ◽  
A. Nevar ◽  
M. Kuzmanovic ◽  
...  

Gold and copper oxide nanoparticles (NPs) were synthesized using pulsed Nd:YAG laser ablation in liquids (acetone and distilled water). The possibility of emission increasing from laser-induced plasma after the deposition of the prepared NPs on a glass surface promising for spectroscopic analysis of transparent samples was demonstrated.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 712
Author(s):  
Ahmed Al-Kattan ◽  
David Grojo ◽  
Christophe Drouet ◽  
Alexandros Mouskeftaras ◽  
Philippe Delaporte ◽  
...  

Driven by flexibility, precision, repeatability and eco-friendliness, laser-based technologies have attracted great interest to engineer or to analyze materials in various fields including energy, environment, biology and medicine. A major advantage of laser processing relies on the ability to directly structure matter at different scales and to prepare novel materials with unique physical and chemical properties. It is also a contact-free approach that makes it possible to work in inert or reactive liquid or gaseous environment. This leads today to a unique opportunity for designing, fabricating and even analyzing novel complex bio-systems. To illustrate this potential, in this paper, we gather our recent research on four types of laser-based methods relevant for nano-/micro-scale applications. First, we present and discuss pulsed laser ablation in liquid, exploited today for synthetizing ultraclean “bare” nanoparticles attractive for medicine and tissue engineering applications. Second, we discuss robust methods for rapid surface and bulk machining (subtractive manufacturing) at different scales by laser ablation. Among them, the microsphere-assisted laser surface engineering is detailed for its appropriateness to design structured substrates with hierarchically periodic patterns at nano-/micro-scale without chemical treatments. Third, we address the laser-induced forward transfer, a technology based on direct laser printing, to transfer and assemble a multitude of materials (additive structuring), including biological moiety without alteration of functionality. Finally, the fourth method is about chemical analysis: we present the potential of laser-induced breakdown spectroscopy, providing a unique tool for contact-free and space-resolved elemental analysis of organic materials. Overall, we present and discuss the prospect and complementarity of emerging reliable laser technologies, to address challenges in materials’ preparation relevant for the development of innovative multi-scale and multi-material platforms for bio-applications.


1998 ◽  
Vol 538 ◽  
Author(s):  
V. Zhigilei ◽  
Barbara J. Garrison

AbstractLaser ablation of organic solids is a complex collective phenomenon that includes processes occurring at different length and time scales. A mesoscopic breathing sphere model developed recently for molecular dynamics simulation of laser ablation and damage of organic solids has significantly expanded the length-scale (up to hundreds of nanometers) and the time-scale (up to nanoseconds) of the simulations. The laser induced buildup of a high pressure within the absorbing volume and generation of the pressure waves propagating from the absorption region poses an additional challenge for molecular-level simulation. A new dynamic boundary condition is developed to minimize the effects of the reflection of the wave from the boundary of the computational cell. The boundary condition accounts for the laser induced pressure wave propagation as well as the direct laser energy deposition in the boundary region.


2003 ◽  
Vol 107 (45) ◽  
pp. 9547-9553 ◽  
Author(s):  
Andrei Burnin ◽  
Joseph J. BelBruno

1996 ◽  
Vol 3 (2) ◽  
pp. 108-112 ◽  
Author(s):  
Toyoaki Uchida ◽  
Shin Egawa ◽  
Masatsugu Iwamura ◽  
Makoto Ohori ◽  
Eiji Yokoyama ◽  
...  

2019 ◽  
Vol 467-468 ◽  
pp. 402-410 ◽  
Author(s):  
Valery A. Svetlichnyi ◽  
Anastasiia. V. Shabalina ◽  
Ivan N. Lapin ◽  
Darya A. Goncharova ◽  
Tamara S. Kharlamova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document