Intelligence and neural efficiency: Measures of brain activation versus measures of functional connectivity in the brain

Intelligence ◽  
2009 ◽  
Vol 37 (2) ◽  
pp. 223-229 ◽  
Author(s):  
Aljoscha C. Neubauer ◽  
Andreas Fink
2022 ◽  
Vol 18 (1) ◽  
Author(s):  
Dazhi Cheng ◽  
Mengyi Li ◽  
Jiaxin Cui ◽  
Li Wang ◽  
Naiyi Wang ◽  
...  

Abstract Background Mathematical expressions mainly include arithmetic (such as 8 − (1 + 3)) and algebra (such as a − (b + c)). Previous studies have shown that both algebraic processing and arithmetic involved the bilateral parietal brain regions. Although previous studies have revealed that algebra was dissociated from arithmetic, the neural bases of the dissociation between algebraic processing and arithmetic is still unclear. The present study uses functional magnetic resonance imaging (fMRI) to identify the specific brain networks for algebraic and arithmetic processing. Methods Using fMRI, this study scanned 30 undergraduates and directly compared the brain activation during algebra and arithmetic. Brain activations, single-trial (item-wise) interindividual correlation and mean-trial interindividual correlation related to algebra processing were compared with those related to arithmetic. The functional connectivity was analyzed by a seed-based region of interest (ROI)-to-ROI analysis. Results Brain activation analyses showed that algebra elicited greater activation in the angular gyrus and arithmetic elicited greater activation in the bilateral supplementary motor area, left insula, and left inferior parietal lobule. Interindividual single-trial brain-behavior correlation revealed significant brain-behavior correlations in the semantic network, including the middle temporal gyri, inferior frontal gyri, dorsomedial prefrontal cortices, and left angular gyrus, for algebra. For arithmetic, the significant brain-behavior correlations were located in the phonological network, including the precentral gyrus and supplementary motor area, and in the visuospatial network, including the bilateral superior parietal lobules. For algebra, significant positive functional connectivity was observed between the visuospatial network and semantic network, whereas for arithmetic, significant positive functional connectivity was observed only between the visuospatial network and phonological network. Conclusion These findings suggest that algebra relies on the semantic network and conversely, arithmetic relies on the phonological and visuospatial networks.


2019 ◽  
Vol 34 (4) ◽  
pp. 191-197
Author(s):  
Christof Karmonik ◽  
Makiko Hirata ◽  
Saba Elias ◽  
J Todd Frazier

Around 1741, composer Johann Sebastian Bach published a long and complicated keyboard piece, calling it Aria with diverse variations for a harpsichord with two manuals. It was the capstone of a publication project called German Clavier-Übung (Keyboard Practice) where Bach wanted to show what was possible at the keyboard in terms of technical development, virtuosic finesse and compositional sophistication. The music is meticulously patterned, beginning with a highly ornamented Aria, the bass line of which fuels the 30 variations that follow. The piece is clearly divided into two parts with the second half beginning with an overture with a fanfare opening, in variation 16. The piece ends as it begins, with the return of the Aria. Here, we present an investigation into activation and connectivity in the brain of a pianist, who listened to her own recording of the “Goldberg” variation while undergoing a fMRI examination. Similarity of brain connectivity is quantified and compared with the subjective scores provided by the subject.


2018 ◽  
Vol 27 (6) ◽  
pp. 462-469 ◽  
Author(s):  
Merim Bilalić

The performance of experts seems almost effortless. The neural-efficiency hypothesis takes this into account, suggesting that because of practice and automatization of procedures, experts require fewer brain resources. Here, I argue that the way the brain accommodates complex skills does indeed have to do with the nature of experts’ performance. However, instead of exhibiting less brain activation, experts’ performance actually engages more brain areas. Behind the seemingly effortless performance of experts lies a complex cognitive system that relies on knowledge about the domain of expertise. Unlike novices, who need to execute one process at a time, experts are able to recognize an object, retrieve its function, and connect it to another object simultaneously. The expert brain deals with this computational burden by engaging not only specific brain areas in one hemisphere but also the same (homologous) area in the opposite hemisphere. This phenomenon, which I call the double take of expertise, has been observed in a number of expertise domains. I describe it here in object- and pattern-recognition tasks in the domain of chess. I also discuss the importance of the study of expertise for our understanding of the human brain in general.


2018 ◽  
Author(s):  
Paulina Kieliba ◽  
Sasidhar Madugula ◽  
Nicola Filippini ◽  
Eugene P. Duff ◽  
Tamar R. Makin

AbstractMeasuring whole-brain functional connectivity patterns based on task-free (‘restingstate’) spontaneous fluctuations in the functional MRI (fMRI) signal is a standard approach to probing habitual brain states, independent of task-specific context. This view is supported by spatial correspondence between task- and rest-derived connectivity networks. Yet, it remains unclear whether intrinsic connectivity observed in a resting-state acquisitions is persistent during task. Here, we sought to determine how changes in ongoing brain activation, elicited by task performance, impact the integrity of whole-brain functional connectivity patterns. We employed a ‘steadystates’ paradigm, in which participants continuously executed a specific task (without baseline periods). Participants underwent separate task-based (visual, motor and visuomotor) or task-free (resting) steady-state scans, each performed over a 5-minute period. This unique design allowed us to apply a set of traditional resting-state analyses to various task-states. In addition, a classical fMRI block-design was employed to identify individualized brain activation patterns for each task, allowing to characterize how differing activation patterns across the steady-states impact whole-brain intrinsic connectivity patterns. By examining correlations across segregated brain regions (nodes) and the whole brain (using independent component analysis), we show that the whole-brain network architecture characteristic of the resting-state is robustly preserved across different steady-task states, despite striking inter-task changes in brain activation (signal amplitude). Subtler changes in functional connectivity were detected locally, within the active networks. Together, we show that intrinsic connectivity underlying the canonical resting-state networks is relatively stable even when participants are engaged in different tasks and is not limited to the resting-state.New and NoteworthyDoes intrinsic functional connectivity (FC) reflect the canonical or transient state of the brain? We tested the consistency of the intrinsic connectivity networks across different task-conditions. We show that despite local changes in connectivity, at the whole-brain level there is little modulation in FC patterns, despite profound and large-scale activation changes. We therefore conclude that intrinsic FC largely reflects the a priori habitual state of the brain, independent of the specific cognitive context.


2019 ◽  
Vol 9 (1) ◽  
pp. 11 ◽  
Author(s):  
Ángel Romero-Martínez ◽  
Macarena González ◽  
Marisol Lila ◽  
Enrique Gracia ◽  
Luis Martí-Bonmatí ◽  
...  

Introduction: There is growing scientific interest in understanding the biological mechanisms affecting and/or underlying violent behaviors in order to develop effective treatment and prevention programs. In recent years, neuroscientific research has tried to demonstrate whether the intrinsic activity within the brain at rest in the absence of any external stimulation (resting-state functional connectivity; RSFC) could be employed as a reliable marker for several cognitive abilities and personality traits that are important in behavior regulation, particularly, proneness to violence. Aims: This review aims to highlight the association between the RSFC among specific brain structures and the predisposition to experiencing anger and/or responding to stressful and distressing situations with anger in several populations. Methods: The scientific literature was reviewed following the PRISMA quality criteria for reviews, using the following digital databases: PubMed, PsycINFO, Psicodoc, and Dialnet. Results: The identification of 181 abstracts and retrieval of 34 full texts led to the inclusion of 17 papers. The results described in our study offer a better understanding of the brain networks that might explain the tendency to experience anger. The majority of the studies highlighted that diminished RSFC between the prefrontal cortex and the amygdala might make people prone to reactive violence, but that it is also necessary to contemplate additional cortical (i.e. insula, gyrus [angular, supramarginal, temporal, fusiform, superior, and middle frontal], anterior and posterior cingulated cortex) and subcortical brain structures (i.e. hippocampus, cerebellum, ventral striatum, and nucleus centralis superior) in order to explain a phenomenon as complex as violence. Moreover, we also described the neural pathways that might underlie proactive violence and feelings of revenge, highlighting the RSFC between the OFC, ventral striatal, angular gyrus, mid-occipital cortex, and cerebellum. Conclusions. The results from this synthesis and critical analysis of RSFC findings in several populations offer guidelines for future research and for developing a more accurate model of proneness to violence, in order to create effective treatment and prevention programs.


2018 ◽  
Vol 29 (5) ◽  
pp. 1984-1996 ◽  
Author(s):  
Dardo Tomasi ◽  
Nora D Volkow

Abstract The origin of the “resting-state” brain activity recorded with functional magnetic resonance imaging (fMRI) is still uncertain. Here we provide evidence for the neurovascular origins of the amplitude of the low-frequency fluctuations (ALFF) and the local functional connectivity density (lFCD) by comparing them with task-induced blood-oxygen level dependent (BOLD) responses, which are considered a proxy for neuronal activation. Using fMRI data for 2 different tasks (Relational and Social) collected by the Human Connectome Project in 426 healthy adults, we show that ALFF and lFCD have linear associations with the BOLD response. This association was significantly attenuated by a novel task signal regression (TSR) procedure, indicating that task performance enhances lFCD and ALFF in activated regions. We also show that lFCD predicts BOLD activation patterns, as was recently shown for other functional connectivity metrics, which corroborates that resting functional connectivity architecture impacts brain activation responses. Thus, our findings indicate a common source for BOLD responses, ALFF and lFCD, which is consistent with the neurovascular origin of local hemodynamic synchrony presumably reflecting coordinated fluctuations in neuronal activity. This study also supports the development of task-evoked functional connectivity density mapping.


2014 ◽  
Vol 9 (12) ◽  
pp. 1904-1913 ◽  
Author(s):  
Silvio Ionta ◽  
Roberto Martuzzi ◽  
Roy Salomon ◽  
Olaf Blanke

Sign in / Sign up

Export Citation Format

Share Document