Vildagliptin, a CD26/DPP4 inhibitor, ameliorates bleomycin-induced pulmonary fibrosis via regulating the extracellular matrix

2020 ◽  
Vol 87 ◽  
pp. 106774
Author(s):  
Yang Liu ◽  
Yongchao Qi
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
D. J. Leeming ◽  
F. Genovese ◽  
J. M. B. Sand ◽  
D. G. K. Rasmussen ◽  
C. Christiansen ◽  
...  

AbstractPulmonary fibrosis has been identified as a main factor leading to pulmonary dysfunction and poor quality of life in post-recovery Severe Acute Respiratory Syndrome (SARS) survivor’s consequent to SARS-Cov-2 infection. Thus there is an urgent medical need for identification of readily available biomarkers that in patients with SARS-Cov-2 infection are able to; (1) identify patients in most need of medical care prior to admittance to an intensive care unit (ICU), and; (2) identify patients post-infection at risk of developing persistent fibrosis of lungs with subsequent impaired quality of life and increased morbidity and mortality. An intense amount of research have focused on wound healing and Extracellular Matrix (ECM) remodelling of the lungs related to lung function decline in pulmonary fibrosis (PF). A range of non-invasive serological biomarkers, reflecting tissue remodelling, and fibrosis have been shown to predict risk of acute exacerbations, lung function decline and mortality in PF and other interstitial lung diseases (Sand et al. in Respir Res 19:82, 2018). We suggest that lessons learned from such PF studies of the pathological processes leading to lung function decline could be used to better identify patients infected with SARS-Co-V2 at most risk of acute deterioration or persistent fibrotic damage of the lung and could consequently be used to guide treatment decisions.


2018 ◽  
Vol 29 (18) ◽  
pp. 2165-2175 ◽  
Author(s):  
Elizabeth Monaghan-Benson ◽  
Erika S. Wittchen ◽  
Claire M. Doerschuk ◽  
Keith Burridge

Idiopathic pulmonary fibrosis (IPF) is an incurable disease of the lung that is characterized by excessive deposition of extracellular matrix (ECM), resulting in disruption of normal lung function. The signals regulating fibrosis include both transforming growth factor beta (TGF-β) and tissue rigidity and a major signaling pathway implicated in fibrosis involves activation of the GTPase RhoA. During studies exploring how elevated RhoA activity is sustained in IPF, we discovered that not only is RhoA activated by profibrotic stimuli but also that the expression of Rnd3, a major antagonist of RhoA activity, and the activity of p190RhoGAP (p190), a Rnd3 effector, are both suppressed in IPF fibroblasts. Restoration of Rnd3 levels in IPF fibroblasts results in an increase in p190 activity, a decrease in RhoA activity and a decrease in the overall fibrotic phenotype. We also find that treatment with IPF drugs nintedanib and pirfenidone decreases the fibrotic phenotype and RhoA activity through up-regulation of Rnd3 expression and p190 activity. These data provide evidence for a pathway in IPF where fibroblasts down-regulate Rnd3 levels and p190 activity to enhance RhoA activity and drive the fibrotic phenotype.


2016 ◽  
Vol 49 (2) ◽  
pp. 1501941 ◽  
Author(s):  
Zaneta Sibinska ◽  
Xia Tian ◽  
Martina Korfei ◽  
Baktybek Kojonazarov ◽  
Janina Susanne Kolb ◽  
...  

Interstitial lung fibroblast activation coupled with extracellular matrix production is a pathological signature of idiopathic pulmonary fibrosis (IPF), and is governed by transforming growth factor (TGF)-β/Smad signalling. We sought to define the role of heat shock protein (HSP)90 in profibrotic responses in IPF and to determine the therapeutic effects of HSP90 inhibition in a murine model of pulmonary fibrosis.We investigated the effects of HSP90 inhibition in vitro by applying 17-AAG (17-allylamino-17-demethoxygeldanamycin) to lung fibroblasts and A549 cells and in vivo by administering 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin) to mice with bleomycin-induced pulmonary fibrosis.HSP90 expression was increased in (myo)fibroblasts from fibrotic human and mouse lungs compared with controls. 17-AAG inhibited TGF-β1-induced extracellular matrix production and transdifferentiation of lung fibroblasts and epithelial–mesenchymal transition of A549 cells. The antifibrotic effects were associated with TGF-β receptor disruption and inhibition of Smad2/3 activation. Co-immunoprecipitation revealed that HSP90β interacted with TGF-β receptor II and stabilised TGF-β receptors. Furthermore, 17-DMAG improved lung function and decreased fibrosis and matrix metalloproteinase activity in the lungs of bleomycin-challenged mice.In conclusion, this is the first study to demonstrate that HSP90 inhibition blocks pulmonary fibroblast activation and ameliorates bleomycin-induced pulmonary fibrosis in mice.


2021 ◽  
Vol 22 (23) ◽  
pp. 12928
Author(s):  
Constança Júnior ◽  
Maria Narciso ◽  
Esther Marhuenda ◽  
Isaac Almendros ◽  
Ramon Farré ◽  
...  

Pulmonary fibrosis (PF) is a progressive disease that disrupts the mechanical homeostasis of the lung extracellular matrix (ECM). These effects are particularly relevant in the lung context, given the dynamic nature of cyclic stretch that the ECM is continuously subjected to during breathing. This work uses an in vivo model of pulmonary fibrosis to characterize the macro- and micromechanical properties of lung ECM subjected to stretch. To that aim, we have compared the micromechanical properties of fibrotic ECM in baseline and under stretch conditions, using a novel combination of Atomic Force Microscopy (AFM) and a stretchable membrane-based chip. At the macroscale, fibrotic ECM displayed strain-hardening, with a stiffness one order of magnitude higher than its healthy counterpart. Conversely, at the microscale, we found a switch in the stretch-induced mechanical behaviour of the lung ECM from strain-hardening at physiological ECM stiffnesses to strain-softening at fibrotic ECM stiffnesses. Similarly, we observed solidification of healthy ECM versus fluidization of fibrotic ECM in response to stretch. Our results suggest that the mechanical behaviour of fibrotic ECM under stretch involves a potential built-in mechanotransduction mechanism that may slow down the progression of PF by steering resident fibroblasts away from a pro-fibrotic profile.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1015 ◽  
Author(s):  
Matthew S. Stratton ◽  
Saptarsi M. Haldar ◽  
Timothy A. McKinsey

Fibrosis is defined as excess deposition of extracellular matrix, resulting in tissue scarring and organ dysfunction. It is estimated that 45% of deaths in the developed world are due to fibrosis-induced organ failure. Despite the well-accepted role of fibrosis in the pathogenesis of numerous diseases, there are only two US Food and Drug Administration–approved anti-fibrotic therapies, both of which are currently restricted to the treatment of pulmonary fibrosis. Thus, organ fibrosis represents a massive unmet medical need. Here, we review recent findings suggesting that an epigenetic regulatory protein, BRD4, is a nodal effector of organ fibrosis, and we highlight the potential of small-molecule BRD4 inhibitors for the treatment of diverse fibrotic diseases.


2020 ◽  
Vol 29 (157) ◽  
pp. 200269
Author(s):  
Manuela Platé ◽  
Delphine Guillotin ◽  
Rachel C Chambers

Idiopathic pulmonary fibrosis (IPF) is characterised by the progressive deposition of excessive extracellular matrix proteins within the lung parenchyma and represents the most rapidly progressive and fatal of all fibrotic conditions. Current anti-fibrotic drugs approved for the treatment of IPF fail to halt disease progression and have significant side-effect profiles. Therefore, there remains a pressing need to develop novel therapeutic strategies for IPF. Mammalian target of rapamycin (mTOR) forms the catalytic subunit of two complexes, mTORC1 and mTORC2. mTORC1 acts as critical cellular sensor which integrates intracellular and extracellular signals to reciprocally regulate a variety of anabolic and catabolic processes. The emerging evidence for a critical role for mTORC1 in influencing extracellular matrix production, metabolism, autophagy and senescence in the setting of IPF highlights this axis as a novel therapeutic target with the potential to impact multiple IPF pathomechanisms.


2013 ◽  
Vol 19 (5) ◽  
pp. 446-452 ◽  
Author(s):  
Chiko Shimbori ◽  
Jack Gauldie ◽  
Martin Kolb

Sign in / Sign up

Export Citation Format

Share Document