Numerical analysis on fire performance of steel-reinforced concrete-filled steel tubular columns with square cross-section

Structures ◽  
2020 ◽  
Vol 28 ◽  
pp. 1-16 ◽  
Author(s):  
Wen-Jing Mao ◽  
Wen-Da Wang ◽  
Wei Xian
2012 ◽  
Vol 446-449 ◽  
pp. 922-925
Author(s):  
Guo Feng Yu ◽  
Xu Dong Zhao ◽  
Hai Yu Sui

This paper developed numerical analysis program. Results agree well with the tested ones.So the numerical analysis method can be used to estimate the bearing capacity and deformation.


The composite structural element under study is a carbon fiber wrapped, steel I section reinforced concrete column. The wrapped CFRP is under tension and reinforced concrete under radial compression. The aim of the research is to determine the behavior of the composite structural element under axial loads. The Stress-strain characteristics and load bearing capacity of control and CFRP wrapped tubular columns were determined experimentally. Further, Finite element analysis of steel, reinforced concrete and CFRP wrapped concrete columns sections, was conducted using ANSYS Workbench 15.0 software. The experimental and analytical results were compared.


2019 ◽  
Vol 23 (7) ◽  
pp. 1290-1304
Author(s):  
Yang Yang ◽  
Ze-Yang Sun ◽  
Gang Wu ◽  
Da-Fu Cao ◽  
Zhi-Qin Zhang

This study presents a design method for hybrid fiber-reinforced-polymer-steel-reinforced concrete beams by an optimized analysis of the cross section. First, the relationships among the energy consumption, the bearing capacity, and the reinforcement ratio are analyzed; then, the parameters of the cross section are determined. Comparisons between the available theoretical and experimental results show that the designed hybrid fiber-reinforced-polymer-steel-reinforced concrete beams with a low area ratio between the fiber-reinforced polymer and the steel reinforcement could meet the required carrying capacity and exhibited high ductility.


2011 ◽  
Vol 243-249 ◽  
pp. 15-19 ◽  
Author(s):  
Zhe Li ◽  
Shao Ji Chen ◽  
Jing Xu ◽  
Ye Ni Wang ◽  
Cui Ping Zhang

Compared with reinforced concrete shaped columns, bearing capacity and ductility of steel reinforced concrete shaped columns are significantly improved, so it is with theoretical significance and practical application of value to research. Based on the plain cross section presume, with material cross-section boundary calculation unit, 15 steel reinforced concrete cross-shaped columns(SRCCSC) have made nonlinear full-rang numerical analysis. It demonstrates that the most adverse curvature ductility load angle of SRCCRSC is 45°.Loading angle (), axial compression ratio (n), and the ratio of spacing and diameter of longitudinal reinforcements (s/d) are the principal factors in curvature ductility of SRCCSC subjected to biaxial eccentric compression. Under the most unfavorable loading angle, through a regression analysis of curvature ductility computer data of 150 cross-shaped columns with 8mm stirrups diameter and 150 columns with 10mm stirrups diameter, it can be obtained with the relationship betweenand axial compression ration,s/d, of SRCCSC subjected to biaxial eccentric compression.


2013 ◽  
Vol 351-352 ◽  
pp. 401-405
Author(s):  
Cheng Zhu Qiu ◽  
Gang Yang

The steel reinforced concrete column is one of the important members for structures, it is essential to study the high temperature performance of concrete column. The numerical simulation research is done using finite element software ANSYS. Under the high temperature, the analysis of the compressive bearing capacity and flexural capacity of the concrete columns strengthened by CFRP is done, and the compressive bearing capacities of different cross-section concrete columns strengthened with CFRP are tested.


2014 ◽  
Vol 638-640 ◽  
pp. 127-131 ◽  
Author(s):  
Ping Guan ◽  
Lan Xiang Chen

In order to exert the force performance of steel tubular columns filled with steel-reinforced concrete, the focus of the paper is about the influence of load condition on flexural mechanical properties and the shear mechanical properties of the composite columns. The two types of loading conditions are: 1.Steel pipe, steel placed in the steel tube and concrete subject to compressive load simultaneously; 2.Compressive load acts on steel and concrete. The results show that the calculated results based on ADINA and the experimental ones are in agreement well. The calculated results also show that the load condition has no influence on flexural mechanical properties, but has a great influence on shear mechanical properties of the composite columns.


Sign in / Sign up

Export Citation Format

Share Document