Modulation of fibroblast phenotype and extracellular matrix composition by ingenol mebutate may be associated with scar resolution and improved dermal cosmesis

2012 ◽  
Vol 66 (4) ◽  
pp. AB218
2021 ◽  
Vol 14 (3) ◽  
pp. dmm048116 ◽  
Author(s):  
Aikta Sharma ◽  
Alice Goring ◽  
Peter B. Johnson ◽  
Roger J. H. Emery ◽  
Eric Hesse ◽  
...  

ABSTRACTCollagen assembly during development is essential for successful matrix mineralisation, which determines bone quality and mechanocompetence. However, the biochemical and structural perturbations that drive pathological skeletal collagen configuration remain unclear. Deletion of vascular endothelial growth factor (VEGF; also known as VEGFA) in bone-forming osteoblasts (OBs) induces sex-specific alterations in extracellular matrix (ECM) conformation and mineralisation coupled to vascular changes, which are augmented in males. Whether this phenotypic dimorphism arises as a result of the divergent control of ECM composition and its subsequent arrangement is unknown and is the focus of this study. Herein, we used murine osteocalcin-specific Vegf knockout (OcnVEGFKO) and performed ex vivo multiscale analysis at the tibiofibular junction of both sexes. Label-free and non-destructive polarisation-resolved second-harmonic generation (p-SHG) microscopy revealed a reduction in collagen fibre number in males following the loss of VEGF, complemented by observable defects in matrix organisation by backscattered electron scanning electron microscopy. This was accompanied by localised divergence in collagen orientation, determined by p-SHG anisotropy measurements, as a result of OcnVEGFKO. Raman spectroscopy confirmed that the effect on collagen was linked to molecular dimorphic VEGF effects on collagen-specific proline and hydroxyproline, and collagen intra-strand stability, in addition to matrix carbonation and mineralisation. Vegf deletion in male and female murine OB cultures in vitro further highlighted divergence in genes regulating local ECM structure, including Adamts2, Spp1, Mmp9 and Lama1. Our results demonstrate the utility of macromolecular imaging and spectroscopic modalities for the detection of collagen arrangement and ECM composition in pathological bone. Linking the sex-specific genetic regulators to matrix signatures could be important for treatment of dimorphic bone disorders that clinically manifest in pathological nano- and macro-level disorganisation.This article has an associated First Person interview with the first author of the paper.


Author(s):  
Xudong Zhu ◽  
Weiyan Shen ◽  
Zhu Liu ◽  
Shihao Sheng ◽  
Wei Xiong ◽  
...  

The antidiabetic drug metformin exerts pleiotropic effects on multiple organs, including the cardiovascular system. Evidence has shown that metformin improves healthspan and lifespan in male mice, yet its lifespan lengthening effect in females remains elusive. We herein demonstrated that metformin fails to extend the lifespan in female mice. Compared to 2-month-old young controls, 20-month-old female mice showed a spectrum of degenerative cardiac phenotypes alongside significant alterations in the extracellular matrix composition. Despite lowered reactive oxygen species production, long-term metformin treatment did not improve cardiac function in the aged female mice. In contrast, RNA sequencing analyses demonstrated that metformin treatment elevated the extracellular matrix-related gene while lowering oxidative phosphorylation-related gene expression in the heart. In addition, metformin treatment induced metabolic reprogramming that suppressed mitochondrial respiration but activated glycolysis (i.e., Warburg effect) in cultured primary cardiomyocytes and macrophages, thereby sustaining an inflammatory status and lowering ATP production. These findings suggest the unexpected detrimental effects of metformin on the regulation of cardiac homeostasis and longevity in female mice, reinforcing the significance of comprehensive testing prior to the translation of metformin-based novel therapies.


2021 ◽  
Author(s):  
Saida Benomar ◽  
Gisela Di Venanzio ◽  
Mario F. Feldman

Acinetobacter baumannii is emerging as a multidrug-resistant (MDR) nosocomial pathogen of increasing threat to human health worldwide. The recent MDR urinary isolate UPAB1 carries the plasmid pAB5, a member of a family of large conjugative plasmids (LCP). LCP encode several antibiotic resistance genes and repress the type VI secretion system (T6SS) to enable their dissemination, employing two TetR transcriptional regulators. Furthermore, pAB5 controls the expression of additional chromosomally encoded genes, impacting UPAB1 virulence. Here we show that a pAB5-encoded H-NS transcriptional regulator represses the synthesis of the exopolysaccharide PNAG and the expression of a previously uncharacterized three-gene cluster that encodes a protein belonging to the CsgG/HfaB family. Members of this protein family are involved in amyloid or polysaccharide formation in other species. Deletion of the CsgG homolog abrogated PNAG production and CUP pili formation, resulting in a subsequent reduction in biofilm formation. Although this gene cluster is widely distributed in Gram-negative bacteria, it remains largely uninvestigated. Our results illustrate the complex cross-talks that take place between plasmids and the chromosomes of their bacterial host, which in this case can contribute to the pathogenesis of Acinetobacter . IMPORTANCE The opportunistic human pathogen Acinetobacter baumannii displays the highest reported rates of multidrug resistance among Gram-negative pathogens. Many A. baumannii strains carry large conjugative plasmids like pAB5. In recent years, we have witnessed an increase in knowledge about the regulatory cross-talks between plasmids and bacterial chromosomes. Here we show that pAB5 controls the composition of the bacterial extracellular matrix, resulting in a drastic reduction in biofilm formation. The association between biofilm formation, virulence, and antibiotic resistance is well-documented. Therefore, understanding the factors involved in the regulation of biofilm formation in Acinetobacter has remarkable therapeutic potential.


1997 ◽  
Vol 99 ◽  
pp. S28
Author(s):  
Christel Herold-Mende ◽  
Daniela Riede ◽  
Margareta M. Mueller ◽  
Annette Buttler ◽  
Hans-Herbert Steiner ◽  
...  

2014 ◽  
Vol 34 (38) ◽  
pp. 12678-12689 ◽  
Author(s):  
P. T. Kurshan ◽  
A. Q. Phan ◽  
G. J. Wang ◽  
M. M. Crane ◽  
H. Lu ◽  
...  

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Pengfei Xu ◽  
Fabian Gärtner ◽  
Adrian Gihring ◽  
Congxing Liu ◽  
Timo Burster ◽  
...  

Abstract Background Previously, it has been shown that obesity is a risk factor for recovery, regeneration, and tissue repair after blunt trauma and can affect the rate of muscle recovery and collagen deposition after trauma. To date, lung tissue regeneration and extracellular matrix regulation in obese mice after injury has not been investigated in detail yet. Methods This study uses an established blunt thorax trauma model to analyze morphological changes and alterations on gene and protein level in lean or obese (diet-induced obesity for 16 ± 1 week) male C57BL/6 J mice at various time-points after trauma induction (1 h, 6 h, 24 h, 72 h and 192 h). Results Morphological analysis after injury showed lung parenchyma damage at early time-points in both lean and obese mice. At later time-points a better regenerative capacity of lean mice was observed, since obese animals still exhibited alveoli collapse, wall thickness as well as remaining filled alveoli structures. Although lean mice showed significantly increased collagen and fibronectin gene levels, analysis of collagen deposition showed no difference based on colorimetric quantification of collagen and visual assessment of Sirius red staining. When investigating the organization of the ECM on gene level, a decreased response of obese mice after trauma regarding extracellular matrix composition and organization was detectable. Differences in the lung tissue between the diets regarding early responding MMPs (MMP8/9) and late responding MMPs (MMP2) could be observed on gene and protein level. Obese mice show differences in regulation of extracellular matrix components compared to normal weight mice, which results in a decreased total MMP activity in obese animals during the whole regeneration phase. Starting at 6 h post traumatic injury, lean mice show a 50% increase in total MMP activity compared to control animals, while MMP activity in obese mice drops to 50%. Conclusions In conclusion, abnormal regulation of the levels of extracellular matrix genes in the lung may contribute to an aberrant regeneration after trauma induction with a delay of repair and pathological changes of the lung tissue in obese mice.


Sign in / Sign up

Export Citation Format

Share Document