scholarly journals The OM-85 bacterial lysate inhibits SARS-CoV-2 infection of epithelial cells by downregulating SARS-CoV-2 receptor expression

Author(s):  
Vadim Pivniouk ◽  
Oksana Pivniouk ◽  
Avery DeVries ◽  
Jennifer L. Uhrlaub ◽  
Ashley Michael ◽  
...  
2021 ◽  
Vol 22 (14) ◽  
pp. 7669
Author(s):  
Cassio Luiz Coutinho Almeida-da-Silva ◽  
Harmony Matshik Dakafay ◽  
Kaitlyn Liu ◽  
David M. Ojcius

A large body of evidence shows the harmful effects of cigarette smoke to oral and systemic health. More recently, a link between smoking and susceptibility to coronavirus disease 2019 (COVID-19) was proposed. COVID-19 is due to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which uses the receptor ACE2 and the protease TMPRSS2 for entry into host cells, thereby infecting cells of the respiratory tract and the oral cavity. Here, we examined the effects of cigarette smoke on the expression of SARS-CoV-2 receptors and infection in human gingival epithelial cells (GECs). We found that cigarette smoke condensates (CSC) upregulated ACE2 and TMPRSS2 expression in GECs, and that CSC activated aryl hydrocarbon receptor (AhR) signaling in the oral cells. ACE2 was known to mediate SARS-CoV-2 internalization, and we demonstrate that CSC treatment potentiated the internalization of SARS-CoV-2 pseudovirus in GECs in an AhR-dependent manner. AhR depletion using small interference RNA decreased SARS-CoV-2 pseudovirus internalization in CSC-treated GECs compared with control GECs. Our study reveals that cigarette smoke upregulates SARS-CoV-2 receptor expression and infection in oral cells. Understanding the mechanisms involved in SARS-CoV-2 infection in cells of the oral cavity may suggest therapeutic interventions for preventing viral infection and transmission.


1998 ◽  
Vol 275 (6) ◽  
pp. F904-F914 ◽  
Author(s):  
Richard L. Hébert ◽  
Tim O’Connor ◽  
Chris Neville ◽  
Kevin D. Burns ◽  
Odette Laneuville ◽  
...  

It is widely held that only one prostacyclin (IP) receptor exists that can couple to guanine stimulatory nucleotide binding proteins (Gs) leading to activation of adenyl cyclase. Although IP receptor mRNA is expressed in vascular arterial smooth muscle cells and platelets, with lower level expression in mature thymocytes, splenic lymphocytes, and megakaryocytes, there is no molecular evidence for IP receptor expression in renal epithelial cells. The purpose of the present study was to obtain molecular evidence for the expression and localization of the IP receptor and to study the signaling pathways of IP receptor in rat medullary thick ascending limb (MTAL). Biochemical studies showed that IP prostanoids do not increase cAMP in rat MTAL. However, in the presence of vasopressin, inhibition of cAMP formation by prostacyclin (PGI2) analogs is pertussis toxin sensitive and does not activate protein kinase C. In situ hybridization studies localized IP receptor mRNA expression to MTAL in the rat kidney outer medulla. The results of RT-PCR of freshly isolated RNA from MTAL, with primers specific for the mouse IP receptor cDNA, produced an amplification product of the correct predicted size that contained an expected Nco I endonuclease restriction site. We conclude that rat renal epithelial cells express the IP receptor, coupled to inhibition of cAMP production.


1998 ◽  
Vol 187 (3) ◽  
pp. 389-402 ◽  
Author(s):  
Mamoru Watanabe ◽  
Yoshitaka Ueno ◽  
Tomoharu Yajima ◽  
Susumu Okamoto ◽  
Tatsuhiko Hayashi ◽  
...  

We have demonstrated that intestinal epithelial cells produce interleukin 7 (IL-7), and IL-7 serves as a potent regulatory factor for proliferation of intestinal mucosal lymphocytes expressing functional IL-7 receptor. To clarify the mechanism by which locally produced IL-7 regulates the mucosal lymphocytes, we investigated IL-7 transgenic mice. Here we report that transgenic mice expressing murine IL-7 cDNA driver by the SRα promoter developed chronic colitis in concert with the expression of SRα/IL-7 transgene in the colonic mucosa. IL-7 transgenic but not littermate mice developed chronic colitis at 4–12 wk of age, with histopathological similarity to ulcerative colitis in humans. Southern blot hybridization and competitive PCR demonstrated that the expression of IL-7 messenger RNA was increased in the colonic mucosal lymphocytes but not in the colonic epithelial cells. IL-7 protein accumulation was decreased in the goblet cell–depleted colonic epithelium in the transgenic mice. Immunohistochemical and cytokine production analysis showed that lymphoid infiltrates in the lamina propria were dominated by T helper cell type 1 CD4+ T cells. Flow cytometric analysis demonstrated that CD4+ intraepithelial T cells were increased, but T cell receptor γ/δ T cells and CD8α/α cells were not increased in the area of chronic inflammation. Increased IL-7 receptor expression in mucosal lymphocytes was demonstrated in the transgenic mice. These findings suggest that chronic inflammation in the colonic mucosa may be mediated by dysregulation of colonic epithelial cell–derived IL-7, and this murine model of chronic colitis may contribute to the understanding of the pathogenesis of human inflammatory bowel disease.


1999 ◽  
Vol 67 (8) ◽  
pp. 4237-4242 ◽  
Author(s):  
Nicola L. Jones ◽  
Andrew S. Day ◽  
Hilary A. Jennings ◽  
Philip M. Sherman

ABSTRACT The mechanisms involved in mediating the enhanced gastric epithelial cell apoptosis observed during infection withHelicobacter pylori in vivo are unknown. To determine whether H. pylori directly induces apoptosis of gastric epithelial cells in vitro and to define the role of the Fas-Fas ligand signal transduction cascade, human gastric epithelial cells were infected with H. pylori for up to 72 h under microaerophilic conditions. As assessed by both transmission electron microscopy and fluorescence microscopy, incubation with acagA-positive, cagE-positive, VacA-positive clinical H. pylori isolate stimulated an increase in apoptosis compared to the apoptosis of untreated AGS cells (16.0% ± 2.8% versus 5.9% ± 1.4%, P < 0.05) after 72 h. In contrast, apoptosis was not detected following infection withcagA-negative, cagE-negative, VacA-negative clinical isolates or a Campylobacter jejuni strain. In addition to stimulating apoptosis, infection with H. pylorienhanced Fas receptor expression in AGS cells to a degree comparable to that of treatment with a positive control, gamma interferon (12.5 ng/ml) (148% ± 24% and 167% ± 24% of control, respectively). The enhanced Fas receptor expression was associated with increased sensitivity to Fas-mediated cell death. Ligation of the Fas receptor with an agonistic monoclonal antibody resulted in an increase in apoptosis compared to the apoptosis of cells infected with the bacterium alone (38.5% ± 7.1% versus 16.0% ± 2.8%,P < 0.05). Incubation with neutralizing anti-Fas antibody did not prevent apoptosis of H. pylori-infected cells. Taken together, these findings demonstrate that the gastric pathogen H. pylori stimulates apoptosis of gastric epithelial cells in vitro in association with the enhanced expression of the Fas receptor. These data indicate a role for Fas-mediated signaling in the programmed cell death that occurs in response toH. pylori infection.


Gut Pathogens ◽  
2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicole Tegtmeyer ◽  
Tabita Denisia Ghete ◽  
Verena Schmitt ◽  
Torsten Remmerbach ◽  
Maria Celeste C. Cortes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document