scholarly journals Increase in acid sphingomyelinase level in human retinal endothelial cells and CD34+ circulating angiogenic cells isolated from diabetic individuals is associated with dysfunctional retinal vasculature and vascular repair process in diabetes

2017 ◽  
Vol 11 (3) ◽  
pp. 694-703 ◽  
Author(s):  
Nermin Kady ◽  
Yuanqing Yan ◽  
Tatiana Salazar ◽  
Qi Wang ◽  
Harshini Chakravarthy ◽  
...  
2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Youde Jiang ◽  
Li Liu ◽  
Elizabeth Curtiss ◽  
Jena J. Steinle

Inflammation is an important component of diabetic retinal damage. We previously reported that a novelβ-adrenergic receptor agonist, Compound 49b, reduced Toll-like receptor 4 (TLR4) signaling in retinal endothelial cells (REC) grown in high glucose. Others reported that TLR4 activates high-mobility group box 1 (HMGB1), which has been associated with the NOD-like receptor 3 (NLRP3) inflammasome. Thus, we hypothesized that Epac1, a downstream mediator ofβ-adrenergic receptors, would block TLR4/HMGB1-mediated stimulation of the NLRP3 inflammasome, leading to reduced cleavage of caspase-1 and interleukin-1 beta (IL-1β). We generated vascular specific conditional knockout mice for Epac1 and used REC grown in normal and high glucose treated with an Epac1 agonist and/or NLRP3 siRNA. Protein analyses were done for Epac1, TLR4, HMGB1, NLRP3, cleaved caspase-1, and IL-1β. Loss of Epac1 in the mouse retinal vasculature significantly increased all of the inflammatory proteins. Epac1 effectively reduced high glucose-induced increases in TLR4, HMGB1, cleaved caspase-1, and IL-1βin REC. Taken together, the data suggest that Epac1 reduces formation of the NLRP3 inflammasome to reduce inflammatory responses in the retinal vasculature.


2021 ◽  
Vol 13 ◽  
pp. 117957352110117
Author(s):  
Norihito Fukawa ◽  
Takahiro Ueda ◽  
Tomofumi Ogoshi ◽  
Yasuhide Kitazawa ◽  
Jun Takahashi

Background: Clinicians may choose to administer antiplatelet medications to patients with cerebral aneurysms following endovascular coiling to prevent thrombus formation and vascular occlusion, if they fear a thrombus will form on the platinum wire where it diverges into the vessel from the aneurysm sac. However, the mechanism by which vascular endothelial cells repair a vessel in the living body in the event of a coil deviation and the effects of antiplatelet drugs on these cells have not been fully elucidated. We aimed to investigate the association between endothelial progenitor cells (EPCs) and endothelium formation at the surface of the platinum coils deployed in the carotid artery of rats, and to determine the effects of different antiplatelet drugs on this process. Subjects and Methods: We established an experimental model using normal and diabetic rats at 12 months of age. The diabetic rats were assigned to 4 different diet groups, distinguished by whether they were fed plain rat feed, or the same feed supplemented by 1 of 3 antiplatelet drugs (cilostazol, aspirin, or clopidogrel: all 0.1%) for 2 weeks, and the carotid artery was perforated by an embolization coil (“carotid coil model”). We monitored the process by which vascular endothelial cells formed the new endothelium on the surface of the coil by sampling and evaluating the region at 1, 2, and 4 weeks after placement. This repair process was also compared among 3 groups treated with different antiplatelet drugs (i.e. aspirin, clopidogrel, and cilostazol). One-way analysis of variance tests were performed to evaluate the differences in vascular thickness between groups, and P < .05 was considered statistically significant. Results: The diabetic rats showed delayed neoendothelialization and marked intimal hyperplasia. Cilostazol and clopidogrel effectively counteracted this delayed endothelial repair process. Flk1 immunostaining revealed greater expression in the diabetic rats administered cilostazol, second only to normal rats, suggesting that this agent acted to recruit EPCs. Conclusion: Neoendothelialization is delayed when vascular endothelial cells fail to function normally, which consequently leads to the formation of hyperplastic tissue. Cilostazol may remedy this dysfunction by recruiting EPCs to the site of injury.


2015 ◽  
Vol 282 (1821) ◽  
pp. 20152147 ◽  
Author(s):  
Teresa Kennedy-Lydon ◽  
Nadia Rosenthal

The hearts of lower vertebrates such as fish and salamanders display scarless regeneration following injury, although this feature is lost in adult mammals. The remarkable capacity of the neonatal mammalian heart to regenerate suggests that the underlying machinery required for the regenerative process is evolutionarily retained. Recent studies highlight the epicardial covering of the heart as an important source of the signalling factors required for the repair process. The developing epicardium is also a major source of cardiac fibroblasts, smooth muscle, endothelial cells and stem cells. Here, we examine animal models that are capable of scarless regeneration, the role of the epicardium as a source of cells, signalling mechanisms implicated in the regenerative process and how these mechanisms influence cardiomyocyte proliferation. We also discuss recent advances in cardiac stem cell research and potential therapeutic targets arising from these studies.


2016 ◽  
Vol 310 (11) ◽  
pp. L1185-L1198 ◽  
Author(s):  
Toshio Suzuki ◽  
Yuji Tada ◽  
Rintaro Nishimura ◽  
Takeshi Kawasaki ◽  
Ayumi Sekine ◽  
...  

Pulmonary vascular endothelial function may be impaired by oxidative stress in endotoxemia-derived acute lung injury. Growing evidence suggests that endothelial-to-mesenchymal transition (EndMT) could play a pivotal role in various respiratory diseases; however, it remains unclear whether EndMT participates in the injury/repair process of septic acute lung injury. Here, we analyzed lipopolysaccharide (LPS)-treated mice whose total number of pulmonary vascular endothelial cells (PVECs) transiently decreased after production of reactive oxygen species (ROS), while the population of EndMT-PVECs significantly increased. NAD(P)H oxidase inhibition suppressed EndMT of PVECs. Most EndMT-PVECs derived from tissue-resident cells, not from bone marrow, as assessed by mice with chimeric bone marrow. Bromodeoxyuridine-incorporation assays revealed higher proliferation of capillary EndMT-PVECs. In addition, EndMT-PVECs strongly expressed c- kit and CD133. LPS loading to human lung microvascular endothelial cells (HMVEC-Ls) induced reversible EndMT, as evidenced by phenotypic recovery observed after removal of LPS. LPS-induced EndMT-HMVEC-Ls had increased vasculogenic ability, aldehyde dehydrogenase activity, and expression of drug resistance genes, which are also fundamental properties of progenitor cells. Taken together, our results demonstrate that LPS induces EndMT of tissue-resident PVECs during the early phase of acute lung injury, partly mediated by ROS, contributing to increased proliferation of PVECs.


2008 ◽  
Vol 294 (3) ◽  
pp. H1119-H1129 ◽  
Author(s):  
Susann Patschan ◽  
Jun Chen ◽  
Alla Polotskaia ◽  
Natalja Mendelev ◽  
Jennifer Cheng ◽  
...  

Our group (Patschan S, Chen J, Gealekman O, Krupincza K, Wang M, Shu L, Shayman JA, Goligorsky MS; Am J Physiol Renal Physiol 294: F100–F109, 2008) previously observed an accumulation of gangliosides coincident with development of cell senescence and demonstrated lysosomal permeabilization in human umbilical vein endothelial cells exposed to glycated collagen I (GC). Therefore, we investigated whether the lysosome-dependent, caspase-independent or type 2-programmed cell death (autophagy) is involved in development of premature senescence of endothelial cells. The cleaved microtubule-associated protein 1 light-chain 3 (LC3), a marker of autophagosome formation, was overexpressed within 24 h of GC treatment; however, by 4–5 days, it was nearly undetectable. Early induction of autophagosomes was associated with their fusion with lysosomes, a phenomenon that later became subverted. Autophagic cell death can be triggered by the products of damaged plasma membrane, sphingolipids, and ceramide. We observed a clustering of membrane rafts shortly after exposure to GC; later, after 24 h, we observed an internalization, accompanied by an increased acid sphingomyelinase activity and accumulation of ceramide. Pharmacological inhibition of autophagy prevented development of premature senescence but did lead to the enhanced rate of apoptosis in human umbilical vein endothelial cells exposed to GC. Pharmacological induction of autophagy resulted in reciprocal changes. These observations appear to represent a mechanistic molecular cascade whereby advanced glycation end products like GC induce sphingomyelinase activity, accumulation of ceramide, clustering, and later internalization of lipid rafts.


PLoS ONE ◽  
2017 ◽  
Vol 12 (8) ◽  
pp. e0180808 ◽  
Author(s):  
Hui He ◽  
Rebecca L. Weir ◽  
Jordan J. Toutounchian ◽  
Jayaprakash Pagadala ◽  
Jena J. Steinle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document