Property improvement of room temperature vulcanized silicone elastomer by surface-modified multi-walled carbon nanotube inclusion

2016 ◽  
Vol 657 ◽  
pp. 472-477 ◽  
Author(s):  
Yunfang Liu ◽  
Weidong Chi ◽  
Hongying Duan ◽  
Hua Zou ◽  
Dongmei Yue ◽  
...  
RSC Advances ◽  
2018 ◽  
Vol 8 (36) ◽  
pp. 20182-20189 ◽  
Author(s):  
Ying Lu ◽  
Jian-Long Xu ◽  
Shan Ren ◽  
Ya-Nan Zhong ◽  
Xu Gao ◽  
...  

A one-pot room-temperature-ionic-liquid-assisted sputtering approach is designed to synthesize Cu2O/MWCNTs nanocomposite with high capacitance and long cycling life due to synergistic effects of oxygen-deficient Cu2O and conductive MWCNTs.


2020 ◽  
Vol 20 (7) ◽  
pp. 4470-4473
Author(s):  
Maeum Han ◽  
Jae Keon Kim ◽  
Junyeop Lee ◽  
Hee Kyung An ◽  
Jong Pil Yun ◽  
...  

Palladium-coated multi-walled carbon nanotube (Pd-MWCNT) nanocomposites have been experimentally proven to show highly improved hydrogen (H2) gas detection characteristics at room temperature when compared with single MWCNTs. In this context, we develop an efficient and convenient method for forming nanocomposites by coating Pd nanoparticles on an MWCNT film. Furthermore, we test the applicability of the nanocomposites as sensing materials in detecting H2 gas at room temperature in a reliable and sensitive manner in contrast with ordinary metal-oxidebased gas sensors that operate at high temperatures. We first study the detection efficacy of the Pd-MWCNT film relative to pure MWCNT film. Subsequently, we investigate the Pd-MWCNT sensor’s sensitivity over time for different gas concentrations, the sensor response time, and sensor reproducibility and reliability under various conditions including bending tests. Our sensor exhibits stable reliable detection characteristics and excellent structural flexibility.


Nanoscale ◽  
2009 ◽  
Vol 1 (3) ◽  
pp. 382 ◽  
Author(s):  
Adarsh Kaniyoor ◽  
R. Imran Jafri ◽  
T. Arockiadoss ◽  
S. Ramaprabhu

Author(s):  
Huaqing Xie ◽  
An Cai ◽  
Xinwei Wang

A laser flash technique was applied to measure the thermal diffusivity along a multi-walled carbon nanotube (CNT) array in temperature range of −55∼200 °C. In the measurements, a nanosecond pulsed laser was used to realize noncontact heating and the temperature variations were recorded by an infrared detector. The experimental results show that the thermal diffusivity of the CNT array increases slightly with temperature in the −55∼70 °C temperature range and exhibits no obvious change in the −75∼200 °C temperature range. The CNT array has much larger thermal diffusivity than several known excellent thermal conductors, reaching about 4.6 cm2s−1 at room temperature. The mean thermal conductivity (λ) of individual CNTs was further estimated from the thermal diffusivity, specific heat (Cp), and density (ρ) by using the correlation of λ = αρCp. The thermal conductivity of individual CNTs increases smoothly with the temperature increase, reaching about 750 Wm−1K−1 at room temperature.


2017 ◽  
Vol 253 ◽  
pp. 977-986 ◽  
Author(s):  
Anindita Bora ◽  
Kiranjyoti Mohan ◽  
Durlav Pegu ◽  
Chinmoyee Borpatra Gohain ◽  
Swapan Kumar Dolui

2021 ◽  
Vol 10 (1) ◽  
pp. 178-186
Author(s):  
Xueming Yang ◽  
Jixiang Cui ◽  
Ke Xue ◽  
Yao Fu ◽  
Hanling Li ◽  
...  

Abstract Sintered carbon nanotube (CNT) blocks and porous CNT sponges were prepared, and their thermoelectric properties were measured. The maximum dimensionless thermoelectric figure-of-merit, ZT, at room temperature of the sintered single-walled carbon nanotube (SWCNT) block is 9.34 × 10−5, which is twice higher than that of the sintered multi-walled carbon nanotube (MWCNT) block in this work and also higher than that of other sintered MWCNT blocks reported previously. In addition, the porous MWCNT sponge showed an ultra-low thermal conductivity of 0.021 W/(m K) and significantly enhanced ZT value of 5.72 × 10−4 at room temperature and 1 atm. This ZT value is higher than that of other 3D macroscopic pure CNT materials reported. The pronounced enhancement of the ZT in the porous MWCNT sponge is attributed to the ultra-low density, ultra-high porosity, and interconnected structure of the material, which lead to a fairly low thermal conductivity and better Seebeck coefficient. The finding of this work provides an understanding for exploring potential enhancement mechanisms and improving the thermoelectric properties of CNT-based thermoelectric composites.


Sign in / Sign up

Export Citation Format

Share Document