Determination of the compressive yield strength for nano-grained YAG transparent ceramic by XRD analysis

2016 ◽  
Vol 671 ◽  
pp. 527-531 ◽  
Author(s):  
H.M. Wang ◽  
J.S. Jiang ◽  
Z.Y. Huang ◽  
Y. Chen ◽  
K. Liu ◽  
...  
2020 ◽  
Vol 86 (7) ◽  
pp. 55-58
Author(s):  
A. D. Khvan ◽  
D. V. Khvan ◽  
A. A. Voropaev

The Bauschinger effect is one of the fundamental properties of most metal alloys exposed to plastic deformation under non-monotonic loading. Development of the methods for quantifying this effect is one the important issues of the theory of plasticity. Calculation of the parameter characterizing the aforementioned effect is required for determination of the stress state in plastically deformable blanks upon pressure metal treatment. The value of the parameter (determined in standard tensile tests followed by subsequent compression of samples) is defined by the ratio of the conditional yield strength of the sample under compression to the value of the preliminary tensile stress. A series of cylindrical samples (~10 pcs.) is usually taken for tensile-compression tests. According to the traditional procedure, long-size standard specimens are pre-stretched to various degrees of plastic deformation. After that short specimens are cut out from those specimens for compression tests to determine the conditional compressive yield strength with a tolerance of 0.2% for plastic deformation. Such a procedure is rather time consuming and expensive. We propose and develop a new single-model method for estimating the Bauschinger effect which consists in testing of a single long-size specimen for tension followed by compression of the specimen in a special device providing deformation of a previously stretched specimen without flexure under conditions of a linear stress state. The device was designed, manufactured and underwent the appropriate tests. The device contains supporting elements in the form of conical-shaped sectors that prevent flexure of a long cylindrical specimen upon compression, a ratio of the working part length to diameter ranges from 5 to 10. The results of experimental determination of the parameter β characterizing the indicated effect are presented. The results of comparing the values of the parameter β determined by the developed and traditional methods revealed the possibility of determining the parameter β using the proposed method. To reduce the complexity of performing tests related to determination of the parameter β we approximated it in the form of an exponent as a function of the magnitude of plastic deformation and determine the only one value of β0 under plastic deformations exceeding 0.05. In this regard, β0 can be considered a new characteristic of the material. The calculated data are in good agreement with the experimental results. The values of β0 are determined for a number of studied steel grades.


A description is given of the experimental technique devised to apply the method outlined theoretically in part I to the measurement of the dynamic compressive yield strength of various steels, duralumin, copper, lead, iron and silver. A polished piece of armour steel was employed as a target, and cylindrical specimens were fired at it at various measured velocities from Service weapons. The distance between the weapon and target was made short to ensure normal impact, and apparatus was devised for the precise measurement of striking velocity over this short range. The dynamic compressive yield strength was computed from the density of the specimen, the striking velocity, and from measurements of the dimensions of the test piece before and after test. Details are given of the accuracy of the various measurements, and of their effect on the values of yield strength. The method was found to be inaccurate at low and high velocities. For instance, with mild steel, satisfactory results were only obtainable within the range 400 to 2500 ft. /sec. The range of velocities within which satisfactory results could be obtained varied with the quality of the material tested, soft metals giving results within a much lower range than that necessary for harder materials. Because of its failure at low velocities, the method could not be employed to bridge the gap between static and dynamic tests. The rate of strain employed in the dynamic tests could not be measured, but was estimated to be of the order of 10,000 in. /in. /sec. With the materials tested little change of dynamic strength occurred within the range of striking velocities employed, probably because the rate of strain did not vary to any great extent with the striking velocity. Within the range of weapons available, that is, from a 0·303 in. rifle up to a 13 pdr. gun (calibre 3·12 in.), little change of dynamic strength occurred with alteration of the initial dimensions of the specimens, probably because the corresponding change of rate of strain was not large. In general, the dynamic compressive yield strength S was greater than the static strength Y represented by the compressive stress giving 0·2% permanent strain. For steels of various types, regardless of chemical composition and heat treatment, there was a relation between S / Y and the static strength Y , the ratio decreasing from approximately 3 when Y was 20 tons/sq. in. to 1 when Y was 120 tons/sq. in. A similar relation occurred with duralumin, S / Y varying from 2·5 at Y = 8 tons/sq. in. to 1·4 at Y = 25 tons/sq. in. Dynamic compressive yield values were obtained for soft materials such as pure lead, copper and Armco iron, which, under static conditions, gave no definite yield values. A plot of the unstrained length of the specimen X , expressed as X / L (where L = initial overall length), versus the final overall length L 1 , expressed as L 1 / L , was made for the various materials. Any specified value of X / L was associated with greater values of L 1 / L for the more ductile materials, such as copper and lead, than for the brittle materials, such as armour plate and duralumin.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 857
Author(s):  
Ahmed Fouly ◽  
Ahmed Mohamed Mahmoud Ibrahim ◽  
El-Sayed M. Sherif ◽  
Ahmed M.R. FathEl-Bab ◽  
A.H. Badran

Denture base materials need appropriate mechanical and tribological characteristics to endure different stresses inside the mouth. This study investigates the properties of poly(methyl methacrylate) (PMMA) reinforced with different low loading fractions (0, 0.2, 0.4, 0.6, and 0.8 wt.%) of hydroxyapatite (HA) nanoparticles. HA nanoparticles with different loading fractions are homogenously dispersed in the PMMA matrix through mechanical mixing. The resulting density, Compressive Young’s modulus, compressive yield strength, ductility, fracture toughness, and hardness were evaluated experimentally; the friction coefficient and wear were estimated by rubbing the PMMA/HA nanocomposites against stainless steel and PMMA counterparts. A finite element model was built to determine the wear layer thickness and the stress distribution along the nanocomposite surfaces during the friction process. In addition, the wear mechanisms were elucidated via scanning electron microscopy. The results indicate that increasing the concentration of HA nanoparticles increases the stiffness, compressive yield strength, toughness, ductility, and hardness of the PMMA nanocomposite. Moreover, tribological tests show that increasing the nanoparticle weight fraction considerably decreases the friction coefficient and wear loss.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1969
Author(s):  
Riccardo Scarfiello ◽  
Elisabetta Mazzotta ◽  
Davide Altamura ◽  
Concetta Nobile ◽  
Rosanna Mastria ◽  
...  

The surface and structural characterization techniques of three atom-thick bi-dimensional 2D-WS2 colloidal nanocrystals cross the limit of bulk investigation, offering the possibility of simultaneous phase identification, structural-to-morphological evaluation, and surface chemical description. In the present study, we report a rational understanding based on X-ray photoelectron spectroscopy (XPS) and structural inspection of two kinds of dimensionally controllable 2D-WS2 colloidal nanoflakes (NFLs) generated with a surfactant assisted non-hydrolytic route. The qualitative and quantitative determination of 1T’ and 2H phases based on W 4f XPS signal components, together with the presence of two kinds of sulfur ions, S22− and S2−, based on S 2p signal and related to the formation of WS2 and WOxSy in a mixed oxygen-sulfur environment, are carefully reported and discussed for both nanocrystals breeds. The XPS results are used as an input for detailed X-ray Diffraction (XRD) analysis allowing for a clear discrimination of NFLs crystal habit, and an estimation of the exact number of atomic monolayers composing the 2D-WS2 nanocrystalline samples.


1972 ◽  
Vol 94 (4) ◽  
pp. 847-852 ◽  
Author(s):  
J. D. Stachiw

Bubble inclusions present in cast acrylic plastic generally degrade the mechanical properties of the material. To evaluate the effect of bubbles on the mechanical strength of acrylic plastic, 120 tensile and compressive test specimens were machined from massive acrylic castings with bubble inclusions. The specimens were tested under uniaxial loading condition and effect of bubbles on tensile and compressive strength noted. The stress raiser effect of bubbles caused the tensile specimens to fail at stresses 7 to 30 percent lower than observed in specimens without bubbles. The compressive yield strength was not affected by bubbles. However, here the bubbles served as stress raisers also and caused cracks to initiate at the bubble surfaces when the yield strength of acrylic plastic was reached.


Sign in / Sign up

Export Citation Format

Share Document